scholarly journals haploR: an R-package for querying web-based annotation tools

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 97 ◽  
Author(s):  
Ilya Y. Zhbannikov ◽  
Konstantin Arbeev ◽  
Anatoliy I. Yashin

There exists a set of web-based tools for integration and exploring information linked to annotated genetic variants. We developed haploR, an R-package for querying such web-based genome annotation tools (currently implementing on HaploReg and RegulomeDB) and gathering information in a format suitable for downstream bioinformatic analyses. This will facilitate post-genome wide association studies streamline analysis for rapid discovery and interpretation of genetic associations.

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 97 ◽  
Author(s):  
Ilya Y. Zhbannikov ◽  
Konstantin Arbeev ◽  
Svetlana Ukraintseva ◽  
Anatoliy I. Yashin

We developed haploR, an R package for querying web based genome annotation tools HaploReg and RegulomeDB. haploR gathers information in a data frame which is suitable for downstream bioinformatic analyses. This will facilitate post-genome wide association studies streamline analysis for rapid discovery and interpretation of genetic associations.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Shuquan Rao ◽  
Yao Yao ◽  
Daniel E. Bauer

AbstractGenome-wide association studies (GWAS) have uncovered thousands of genetic variants that influence risk for human diseases and traits. Yet understanding the mechanisms by which these genetic variants, mainly noncoding, have an impact on associated diseases and traits remains a significant hurdle. In this review, we discuss emerging experimental approaches that are being applied for functional studies of causal variants and translational advances from GWAS findings to disease prevention and treatment. We highlight the use of genome editing technologies in GWAS functional studies to modify genomic sequences, with proof-of-principle examples. We discuss the challenges in interrogating causal variants, points for consideration in experimental design and interpretation of GWAS locus mechanisms, and the potential for novel therapeutic opportunities. With the accumulation of knowledge of functional genetics, therapeutic genome editing based on GWAS discoveries will become increasingly feasible.


Author(s):  
Jianhua Wang ◽  
Dandan Huang ◽  
Yao Zhou ◽  
Hongcheng Yao ◽  
Huanhuan Liu ◽  
...  

Abstract Genome-wide association studies (GWASs) have revolutionized the field of complex trait genetics over the past decade, yet for most of the significant genotype-phenotype associations the true causal variants remain unknown. Identifying and interpreting how causal genetic variants confer disease susceptibility is still a big challenge. Herein we introduce a new database, CAUSALdb, to integrate the most comprehensive GWAS summary statistics to date and identify credible sets of potential causal variants using uniformly processed fine-mapping. The database has six major features: it (i) curates 3052 high-quality, fine-mappable GWAS summary statistics across five human super-populations and 2629 unique traits; (ii) estimates causal probabilities of all genetic variants in GWAS significant loci using three state-of-the-art fine-mapping tools; (iii) maps the reported traits to a powerful ontology MeSH, making it simple for users to browse studies on the trait tree; (iv) incorporates highly interactive Manhattan and LocusZoom-like plots to allow visualization of credible sets in a single web page more efficiently; (v) enables online comparison of causal relations on variant-, gene- and trait-levels among studies with different sample sizes or populations and (vi) offers comprehensive variant annotations by integrating massive base-wise and allele-specific functional annotations. CAUSALdb is freely available at http://mulinlab.org/causaldb.


2011 ◽  
Vol 40 (D1) ◽  
pp. D1047-D1054 ◽  
Author(s):  
Mulin Jun Li ◽  
Panwen Wang ◽  
Xiaorong Liu ◽  
Ee Lyn Lim ◽  
Zhangyong Wang ◽  
...  

2020 ◽  
Vol 36 (15) ◽  
pp. 4374-4376
Author(s):  
Ninon Mounier ◽  
Zoltán Kutalik

Abstract Summary Increasing sample size is not the only strategy to improve discovery in Genome Wide Association Studies (GWASs) and we propose here an approach that leverages published studies of related traits to improve inference. Our Bayesian GWAS method derives informative prior effects by leveraging GWASs of related risk factors and their causal effect estimates on the focal trait using multivariable Mendelian randomization. These prior effects are combined with the observed effects to yield Bayes Factors, posterior and direct effects. The approach not only increases power, but also has the potential to dissect direct and indirect biological mechanisms. Availability and implementation bGWAS package is freely available under a GPL-2 License, and can be accessed, alongside with user guides and tutorials, from https://github.com/n-mounier/bGWAS. Supplementary information Supplementary data are available at Bioinformatics online.


2015 ◽  
Vol 44 (D1) ◽  
pp. D869-D876 ◽  
Author(s):  
Mulin Jun Li ◽  
Zipeng Liu ◽  
Panwen Wang ◽  
Maria P. Wong ◽  
Matthew R. Nelson ◽  
...  

Author(s):  
Yun Li ◽  
George T. O’Connor ◽  
Josée Dupuis ◽  
Eric Kolaczyk

AbstractIn genome-wide association studies (GWAS), it is of interest to identify genetic variants associated with phenotypes. For a given phenotype, the associated genetic variants are usually a sparse subset of all possible variants. Traditional Lasso-type estimation methods can therefore be used to detect important genes. But the relationship between genotypes at one variant and a phenotype may be influenced by other variables, such as sex and life style. Hence it is important to be able to incorporate gene-covariate interactions into the sparse regression model. In addition, because there is biological knowledge on the manner in which genes work together in structured groups, it is desirable to incorporate this information as well. In this paper, we present a novel sparse regression methodology for gene-covariate models in association studies that not only allows such interactions but also considers biological group structure. Simulation results show that our method substantially outperforms another method, in which interaction is considered, but group structure is ignored. Application to data on total plasma immunoglobulin E (IgE) concentrations in the Framingham Heart Study (FHS), using sex and smoking status as covariates, yields several potentially interesting gene-covariate interactions.


Sign in / Sign up

Export Citation Format

Share Document