scholarly journals bGWAS: an R package to perform Bayesian genome wide association studies

2020 ◽  
Vol 36 (15) ◽  
pp. 4374-4376
Author(s):  
Ninon Mounier ◽  
Zoltán Kutalik

Abstract Summary Increasing sample size is not the only strategy to improve discovery in Genome Wide Association Studies (GWASs) and we propose here an approach that leverages published studies of related traits to improve inference. Our Bayesian GWAS method derives informative prior effects by leveraging GWASs of related risk factors and their causal effect estimates on the focal trait using multivariable Mendelian randomization. These prior effects are combined with the observed effects to yield Bayes Factors, posterior and direct effects. The approach not only increases power, but also has the potential to dissect direct and indirect biological mechanisms. Availability and implementation bGWAS package is freely available under a GPL-2 License, and can be accessed, alongside with user guides and tutorials, from https://github.com/n-mounier/bGWAS. Supplementary information Supplementary data are available at Bioinformatics online.

2020 ◽  
Author(s):  
Jingshu Wang ◽  
Qingyuan Zhao ◽  
Jack Bowden ◽  
Gilbran Hemani ◽  
George Davey Smith ◽  
...  

Over a decade of genome-wide association studies have led to the finding that significant genetic associations tend to spread across the genome for complex traits. The extreme polygenicity where "all genes affect every complex trait" complicates Mendelian Randomization studies, where natural genetic variations are used as instruments to infer the causal effect of heritable risk factors. We reexamine the assumptions of existing Mendelian Randomization methods and show how they need to be clarified to allow for pervasive horizontal pleiotropy and heterogeneous effect sizes. We propose a comprehensive framework GRAPPLE (Genome-wide mR Analysis under Pervasive PLEiotropy) to analyze the causal effect of target risk factors with heterogeneous genetic instruments and identify possible pleiotropic patterns from data. By using summary statistics from genome-wide association studies, GRAPPLE can efficiently use both strong and weak genetic instruments, detect the existence of multiple pleiotropic pathways, adjust for confounding risk factors, and determine the causal direction. With GRAPPLE, we analyze the effect of blood lipids, body mass index, and systolic blood pressure on 25 disease outcomes, gaining new information on their causal relationships and the potential pleiotropic pathways.


2019 ◽  
Author(s):  
Jia Zhao ◽  
Jingsi Ming ◽  
Xianghong Hu ◽  
Gang Chen ◽  
Jin Liu ◽  
...  

Abstract Motivation The results from Genome-Wide Association Studies (GWAS) on thousands of phenotypes provide an unprecedented opportunity to infer the causal effect of one phenotype (exposure) on another (outcome). Mendelian randomization (MR), an instrumental variable (IV) method, has been introduced for causal inference using GWAS data. Due to the polygenic architecture of complex traits/diseases and the ubiquity of pleiotropy, however, MR has many unique challenges compared to conventional IV methods. Results We propose a Bayesian weighted Mendelian randomization (BWMR) for causal inference to address these challenges. In our BWMR model, the uncertainty of weak effects owing to polygenicity has been taken into account and the violation of IV assumption due to pleiotropy has been addressed through outlier detection by Bayesian weighting. To make the causal inference based on BWMR computationally stable and efficient, we developed a variational expectation-maximization (VEM) algorithm. Moreover, we have also derived an exact closed-form formula to correct the posterior covariance which is often underestimated in variational inference. Through comprehensive simulation studies, we evaluated the performance of BWMR, demonstrating the advantage of BWMR over its competitors. Then we applied BWMR to make causal inference between 130 metabolites and 93 complex human traits, uncovering novel causal relationship between exposure and outcome traits. Availability and implementation The BWMR software is available at https://github.com/jiazhao97/BWMR. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Author(s):  
Jacqueline Milet ◽  
Hervé Perdry

AbstractMotivationMixed linear models (MLM) have been widely used to account for population structure in case-control genome-wide association studies, the status being analyzed as a quantitative phenotype. Chen et al. proved that this method is inappropriate and proposed a score test for the mixed logistic regression (MLR). However this test does not allow an estimation of the variants’ effects.ResultsWe propose two computationally efficient methods to estimate the variants’ effects. Their properties are evaluated on two simulations sets, and compared with other methods (MLM, logistic regression). MLR performs the best in all circumstances. The variants’ effects are well evaluated by our methods, with a moderate bias when the effect sizes are large. Additionally, we propose a stratified QQ-plot, enhancing the diagnosis of p-values inflation or deflation, when population strata are not clearly identified in the sample.AvailabilityAll methods are implemented in the R package milorGWAS available at https://github.com/genostats/[email protected] informationSupplementary data are available at Bioinformatics online.


2018 ◽  
Vol 35 (14) ◽  
pp. 2512-2514 ◽  
Author(s):  
Bongsong Kim ◽  
Xinbin Dai ◽  
Wenchao Zhang ◽  
Zhaohong Zhuang ◽  
Darlene L Sanchez ◽  
...  

Abstract Summary We present GWASpro, a high-performance web server for the analyses of large-scale genome-wide association studies (GWAS). GWASpro was developed to provide data analyses for large-scale molecular genetic data, coupled with complex replicated experimental designs such as found in plant science investigations and to overcome the steep learning curves of existing GWAS software tools. GWASpro supports building complex design matrices, by which complex experimental designs that may include replications, treatments, locations and times, can be accounted for in the linear mixed model. GWASpro is optimized to handle GWAS data that may consist of up to 10 million markers and 10 000 samples from replicable lines or hybrids. GWASpro provides an interface that significantly reduces the learning curve for new GWAS investigators. Availability and implementation GWASpro is freely available at https://bioinfo.noble.org/GWASPRO. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 35 (22) ◽  
pp. 4724-4729 ◽  
Author(s):  
Wujuan Zhong ◽  
Cassandra N Spracklen ◽  
Karen L Mohlke ◽  
Xiaojing Zheng ◽  
Jason Fine ◽  
...  

Abstract Summary Tens of thousands of reproducibly identified GWAS (Genome-Wide Association Studies) variants, with the vast majority falling in non-coding regions resulting in no eventual protein products, call urgently for mechanistic interpretations. Although numerous methods exist, there are few, if any methods, for simultaneously testing the mediation effects of multiple correlated SNPs via some mediator (e.g. the expression of a gene in the neighborhood) on phenotypic outcome. We propose multi-SNP mediation intersection-union test (SMUT) to fill in this methodological gap. Our extensive simulations demonstrate the validity of SMUT as well as substantial, up to 92%, power gains over alternative methods. In addition, SMUT confirmed known mediators in a real dataset of Finns for plasma adiponectin level, which were missed by many alternative methods. We believe SMUT will become a useful tool to generate mechanistic hypotheses underlying GWAS variants, facilitating functional follow-up. Availability and implementation The R package SMUT is publicly available from CRAN at https://CRAN.R-project.org/package=SMUT. Supplementary information Supplementary data are available at Bioinformatics online.


2016 ◽  
Vol 45 (5) ◽  
pp. 1600-1616 ◽  
Author(s):  
Daniel I Swerdlow ◽  
Karoline B Kuchenbaecker ◽  
Sonia Shah ◽  
Reecha Sofat ◽  
Michael V Holmes ◽  
...  

2015 ◽  
Author(s):  
Hon-Cheong SO ◽  
Pak C. SHAM

Genome-wide association studies (GWAS) have become increasingly popular these days and one of the key questions is how much heritability could be explained by all variants in GWAS. We have previously proposed an approach to answer this question, based on recovering the "true" z-statistics from a set of observed z-statistics. Only summary statistics are required. However, methods for standard error (SE) estimation are not available yet, thereby limiting the interpretation of the results. In this study we developed resampling-based approaches to estimate the SE and the methods are implemented in an R package. We found that delete-d-jackknife and parametric bootstrap approaches provide good estimates of the SE. Methods to compute the sum of heritability explained and the corresponding SE are implemented in the R package SumVg, available at https://sites.google.com/site/honcheongso/software/var-totalvg


2019 ◽  
Author(s):  
Seongmun Jeong ◽  
Jae-Yoon Kim ◽  
Namshin Kim

AbstractCVRMS is an R package designed to extract marker subsets from repeated rank-based marker datasets generated from genome-wide association studies or marker effects for genome-wide prediction (https://github.com/lovemun/CVRMS). CVRMS provides an optimized genome-wide biomarker set with the best predictability of phenotype by implemented ridge regression using genetic information. Applying our method to human, animal, and plant datasets with wide heritability (zero to one), we selected hundreds to thousands of biomarkers for precise prediction.


2021 ◽  
Author(s):  
Gui-Juan Feng ◽  
Qian Xu ◽  
Jing-Jing Ni ◽  
Shan-Shan Yang ◽  
Bai-Xue Han ◽  
...  

Abstract Age at menarche (AAM) is a sign of puberty of females. It is a heritable trait associated with various adult diseases. However, the genetic mechanism that determines AAM and links it to disease risk is poorly understood. Aiming to uncover the genetic basis for AAM, we conducted a joint association study in up to 438,089 participants from 3 genome-wide association studies of European and East Asian ancestries. Twenty-one novel genomic loci were identified at the genome-wide significance level. Besides, we observed significant genetic correlations between AAM and 67 complex traits, and the highest genetic correlation was observed between AAM and body mass index (rg=-0.19, P=6.11×10−31). Latent causal variable analyses demonstrate that there is a genetically causal effect of AAM on high blood pressure (GCP=0.47, P=0.02), forced vital capacity (GCP=0.63, P=0.02), age at first live birth (GCP=0.51, P=0.03), impedance of right arm (GCP=0.41, P<1×10-7) and right leg fat percentage (GCP=-0.10, P=0.02), etc. Enrichment analysis identified 5 enriched tissues and 51 enriched gene sets. Four of the five enriched tissues were related to the nervous system, including the hypothalamus middle, hypothalamo hypophyseal system, neurosecretory systems and hypothalamus. The fifth tissue was the retina in the sensory organ. The most significant gene set was the ‘decreased circulating luteinizing hormone level’ (P=2.45×10-6). Our findings may provide useful insights that elucidate the mechanisms determining AAM and the genetic interplay between AAM and some traits of women.


2020 ◽  
Author(s):  
Ruth E Mitchell ◽  
Kirsty Bates ◽  
Robyn E Wootton ◽  
Adil Harroud ◽  
J. Brent Richards ◽  
...  

AbstractThe causes of multiple sclerosis (MS) remain unknown. Smoking has been associated with MS in observational studies and is often thought of as an environmental risk factor. We used two-sample Mendelian Randomization (MR) to examined whether this association is causal using genetic variants identified in genome-wide association studies (GWAS) as associated with smoking. We assessed both smoking initiation and lifetime smoking behaviour (which captures smoking duration, heaviness and cessation). There was very limited evidence for a meaningful effect of smoking on MS susceptibility was measured using summary statistics from the International Multiple Sclerosis Genetics Consortium (IMSGC) meta-analysis, including 14,802 cases and 26,703 controls. There was no clear evidence for an effect of smoking on the risk of developing MS (smoking initiation: odds ratio [OR] 1.03, 95% confidence interval [CI] 0.92-1.61; lifetime smoking: OR 1.10, 95% CI 0.87-1.40). These findings suggest that smoking does not have a detrimental consequence on MS susceptibility. Further work is needed to determine the causal effect of smoking on MS progression.


Sign in / Sign up

Export Citation Format

Share Document