scholarly journals Integrating succession and community assembly perspectives

F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2294 ◽  
Author(s):  
Cynthia Chang ◽  
Janneke HilleRisLambers

Succession and community assembly research overlap in many respects, such as through their focus on how ecological processes like dispersal, environmental filters, and biotic interactions influence community structure. Indeed, many recent advances have been made by successional studies that draw on modern analytical techniques introduced by contemporary community assembly studies. However, community assembly studies generally lack a temporal perspective, both on how the forces structuring communities might change over time and on how historical contingency (e.g. priority effects and legacy effects) and complex transitions (e.g. threshold effects) might alter community trajectories. We believe a full understanding of the complex interacting processes that shape community dynamics across large temporal scales can best be achieved by combining concepts, tools, and study systems into an integrated conceptual framework that draws upon both succession and community assembly theory.

2018 ◽  
Author(s):  
Pengyu Zhao ◽  
Jiabing Bao ◽  
Xue Wang ◽  
Yi Liu ◽  
Cui Li ◽  
...  

The mechanisms underlying community dynamics, which govern the complicated biogeographical patterns of microbes, have long been a research hotspot in community ecology. However, the mixing of multiple ecological processes and the one-sidedness of analytical methods make it difficult to draw inferences about the community assembly mechanisms. In this study, we investigated the driving forces of the soil microbial community in subalpine coniferous forests of the Loess Plateau in Shanxi, China, by integrating multiple analytical methods. The results of the null model demonstrated that deterministic processes (especially interspecific relationships) were the main driving force of the soil microbial community assembly in this study area, relative to stochastic processes. Based on the results of the net relatedness index (NRI) and nearest taxon index (NTI), we inferred that historical and evolutionary factors, such as climate change and local diversification, may have similar effects on microbial community structure based on the climatic niche conservatism. Based on the results of a functional traits analysis, we found that the effects of ongoing ecological processes on the microbial community assembly varied among sites. Therefore, the functional structures seemed to be more related to ongoing ecological processes, whereas the phylogenetic structures seemed to be more related to historical and evolutionary factors, as well as the tradeoff between deterministic and stochastic processes. The functional and phylogenetic structures were mainly shaped by different ecological processes. By integrating multiple ecological processes, our results provide more details of the mechanisms driving the community assembly


2018 ◽  
Author(s):  
Pengyu Zhao ◽  
Jiabing Bao ◽  
Xue Wang ◽  
Yi Liu ◽  
Cui Li ◽  
...  

The mechanisms underlying community dynamics, which govern the complicated biogeographical patterns of microbes, have long been a research hotspot in community ecology. However, the mixing of multiple ecological processes and the one-sidedness of analytical methods make it difficult to draw inferences about the community assembly mechanisms. In this study, we investigated the driving forces of the soil microbial community in subalpine coniferous forests of the Loess Plateau in Shanxi, China, by integrating multiple analytical methods. The results of the null model demonstrated that deterministic processes (especially interspecific relationships) were the main driving force of the soil microbial community assembly in this study area, relative to stochastic processes. Based on the results of the net relatedness index (NRI) and nearest taxon index (NTI), we inferred that historical and evolutionary factors, such as climate change and local diversification, may have similar effects on microbial community structure based on the climatic niche conservatism. Based on the results of a functional traits analysis, we found that the effects of ongoing ecological processes on the microbial community assembly varied among sites. Therefore, the functional structures seemed to be more related to ongoing ecological processes, whereas the phylogenetic structures seemed to be more related to historical and evolutionary factors, as well as the tradeoff between deterministic and stochastic processes. The functional and phylogenetic structures were mainly shaped by different ecological processes. By integrating multiple ecological processes, our results provide more details of the mechanisms driving the community assembly


2021 ◽  
Author(s):  
Sergey Rosbakh ◽  
Loic Chalmandrier ◽  
Shyam Phartyal ◽  
Peter Poschlod

Assembly of plant communities has long been scrutinized through the lens of trait-based ecology. Studies generally analyze functional traits related to the vegetative growth, survival and resource acquisition and thus ignore how ecological processes may affect plants at other stages of their lifecycle, particularly when seeds disperse, persist in soil and germinate. Here, we analyzed an extensive data set of 16 traits for 167 species measured in-situ in 36 grasslands located along an elevational gradient and compared the impact of abiotic filtering, biotic interactions and dispersal on traits reflecting different trait categories: plant vegetative growth, germination, dispersal, and seed morphology. For each community, we quantified community weighted mean (CWM) and functional diversity (FD) for all traits and established their relationships to mean annual temperature. The seed traits were weakly correlated to vegetative traits and thus constituted independent axes of plant phenotypical variation that were affected differently by the ecological processes considered. Abiotic filtering impacted mostly the vegetative traits and to a lesser extent on seed germination and morphological traits. Increasing low-temperature stress towards colder sites selected for short-stature, slow-growing and frost-tolerant species that produce small quantity of smaller seeds with higher degree of dormancy, high temperature requirements for germination and comparatively low germination speed. Biotic interactions, specifically competition in the lowlands and facilitation in uplands, also filtered certain functional traits in the study communities. The benign climate in lowlands promoted plant with competitive strategies including fast growth and resource acquisition (vegetative growth traits) and early and fast germination (germination traits), whereas the effects of facilitation on the vegetative and germination traits were cancelled out by the strong abiotic filtering. The changes in the main dispersal vector from zoochory to anemochory along the gradient strongly affected the dispersal and the seed morphological trait structure of the communities. Specifically, stronger vertical turbulence and moderate warm-upwinds combined with low grazing intensity selected for light and non-round shaped seeds with lower terminal velocity and endozoochorous potential. Synthesis: We clearly demonstrate that, in addition to vegetation traits, seed traits can substantially contribute to functional structuring of plant communities along environmental gradients. Thus, the hard seed traits related to germination and dispersal are critical to detect multiple, complex community assembly rules. Consequently, such traits should be included in core lists of plant traits and, when applicable, be incorporated into analysis of community assembly.


2021 ◽  
Author(s):  
Maximilian Hanusch ◽  
Xie He ◽  
Victoria Ruiz-Hernandez ◽  
Robert R. Junker

Research on ecological successions and community assembly shaped our understanding of community establishment, co-existence, and diversity. Although both lines of research address the same processes such as dispersal, species sorting, and biotic interactions, they lack unifying concepts. However, recent theoretical advances proposed to integrate both research lines and thus provided hypotheses on how communities assemble over time and form complex ecological systems. This framework predicts a sequence of stochastic and niche-based processes along successional gradients. Shifts in these assembly processes are assumed to occur abruptly once abiotic and biotic factors dominate over dispersal as main driver of community assembly. Considering the multidiversity composed of five organismal groups including plants, animals, and microbes, we empirically show that stochastic dispersal-dominated community assembly is replaced by environmental filters and biotic interactions after around 60 years of succession in a glacier forefield. The niche-based character of later successional processes is further supported by a pronounced decline in multi-beta-diversity after the shift in assembly processes. Our results support recent theories and provide new insights into the emergence of multidiverse and complex ecosystems. Our study will stimulate updates of concepts of community assembly considering multiple taxa with unique and complementary ecological roles and help to bridge the gap between research on successions and community assembly.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Inés Martínez ◽  
Maria X Maldonado-Gomez ◽  
João Carlos Gomes-Neto ◽  
Hatem Kittana ◽  
Hua Ding ◽  
...  

The factors that govern assembly of the gut microbiota are insufficiently understood. Here, we test the hypothesis that inter-individual microbiota variation can arise solely from differences in the order and timing by which the gut is colonized early in life. Experiments in which mice were inoculated in sequence either with two complex seed communities or a cocktail of four bacterial strains and a seed community revealed that colonization order influenced both the outcome of community assembly and the ecological success of individual colonizers. Historical contingency and priority effects also occurred in Rag1-/- mice, suggesting that the adaptive immune system is not a major contributor to these processes. In conclusion, this study established a measurable effect of colonization history on gut microbiota assembly in a model in which host and environmental factors were strictly controlled, illuminating a potential cause for the high levels of unexplained individuality in host-associated microbial communities.


Author(s):  
Brian J. Wilsey

Conservation programs alter herbivore stocking rates and find and protect the remaining areas that have not been plowed or converted to crops. Restoration is an ‘Acid Test’ for ecology. If we fully understand how grassland systems function and assemble after disturbance, then it should be easy to restore them after they have been degraded or destroyed. Alternatively, the idea that restorations will not be equivalent to remnants has been termed the ‘Humpty Dumpty’ hypothesis—once lost, it cannot be put back together again. Community assembly may follow rules, and if these rules are uncovered, then we may be able to accurately predict final species composition after assembly. Priority effects are sometimes found depending on species arrival orders, and they can result in alternate states. Woody plant encroachment is the increase in density and biomass of woody plants, and it is strongly affecting grassland C and water cycles.


Sign in / Sign up

Export Citation Format

Share Document