scholarly journals Experimental evaluation of the importance of colonization history in early-life gut microbiota assembly

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Inés Martínez ◽  
Maria X Maldonado-Gomez ◽  
João Carlos Gomes-Neto ◽  
Hatem Kittana ◽  
Hua Ding ◽  
...  

The factors that govern assembly of the gut microbiota are insufficiently understood. Here, we test the hypothesis that inter-individual microbiota variation can arise solely from differences in the order and timing by which the gut is colonized early in life. Experiments in which mice were inoculated in sequence either with two complex seed communities or a cocktail of four bacterial strains and a seed community revealed that colonization order influenced both the outcome of community assembly and the ecological success of individual colonizers. Historical contingency and priority effects also occurred in Rag1-/- mice, suggesting that the adaptive immune system is not a major contributor to these processes. In conclusion, this study established a measurable effect of colonization history on gut microbiota assembly in a model in which host and environmental factors were strictly controlled, illuminating a potential cause for the high levels of unexplained individuality in host-associated microbial communities.

Author(s):  
Farhad Riazi-Rad ◽  
Ava Behrouzi ◽  
Hoora Mazaheri ◽  
Asal Katebi ◽  
Soheila Ajdary

AbstractThe commensal microflora collection known as microbiota has an essential role in maintaining the host's physiological homeostasis. The microbiota has a vital role in induction and regulation of local and systemic immune responses. On the other hand, the immune system involves maintaining microbiota compositions. Optimal microbiota-immune system cross-talk is essential for protective responses to pathogens and immune tolerance to self and harmless environmental antigens. Any change in this symbiotic relationship may cause susceptibility to diseases. The association of various cancers and auto-immune diseases with microbiota has been proven. Here we review the interaction of immune responses to gut microbiota, focusing on innate and adaptive immune system and disease susceptibility.


2014 ◽  
Vol 260 (1) ◽  
pp. 67-75 ◽  
Author(s):  
Lucia M. Kato ◽  
Shimpei Kawamoto ◽  
Mikako Maruya ◽  
Sidonia Fagarasan

2019 ◽  
Author(s):  
Jhansi L. Leslie ◽  
Kimberly C. Vendrov ◽  
Matthew L. Jenior ◽  
Vincent B. Young

AbstractClostridium (Clostridioides) difficile, a Gram-positive, anaerobic bacterium is the leading single cause of nosocomial infections in the United States. A major risk factor for C. difficile infection (CDI) is prior exposure to antibiotics as they increase susceptibility to CDI by altering the membership of the microbial community enabling colonization. The importance of the gut microbiota in providing protection from CDI is underscored by the reported 80-90% success rate of fecal microbial transplants in treating recurrent infection. Adaptive immunity, specifically humoral immunity, is also sufficient to protect from both acute and recurrent CDI. However, the role of the adaptive immune system in mediating clearance of C. difficile has yet to be resolved. Using murine models of CDI, we found that adaptive immunity is dispensable for clearance of C. difficile. However, Random Forest analysis using only 2 members of the resident bacterial community correctly identified animals that would go on to clear the infection with 66.7% accuracy. These findings indicate that the indigenous gut microbiota independent of adaptive immunity facilitates clearance of C. difficile from the murine gastrointestinal tract.ImportanceC. difficile infection is a major cause of morbidity and mortality in hospitalized patients in the United States. Currently the role of the adaptive immune response in modulating levels of C. difficile colonization is unresolved. This work suggests that the indigenous gut microbiota is a main factor that promotes clearance of C. difficile from the GI tract. Our results show that clearance of C. difficile can occur without contributions from the adaptive immune response. This study also has implications for the design of preclinical studies testing the efficacy of vaccines on clearance of bacterial pathogens as inherent differences in the baseline community structure of animals may bias findings.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Lu Su ◽  
Dan Li ◽  
Jiyan Su ◽  
Enqi Zhang ◽  
Shaodan Chen ◽  
...  

Ganoderma lucidum (Leyss.Fr.) Karst is one of the well-known medicinal macrofungi all over the world, and mounting researches have focused on the polysaccharides derived from the spores of G. lucidum. In the present study, BALB/c mice (n = 8–10) were administered with crude polysaccharides of G. lucidum spores (CPGS) and the refined polysaccharides of G. lucidum spores (RPGS) for 30 days to investigate their effect on the adaptive immune system. Results showed that CPGS and RPGS displayed diverse effects on the lymphocyte activity in the spleen. The splenocyte proliferation activity upon mitogen was suppressed by CPGS and RPGS, while the NK cell’s tumor-killing ability was promoted by CPGS. Both CPGS and RPGS could increase the proportion of naïve T cells in thymus, but only RPGS significantly uplifted the percentage of T cells, as well as the T cell subsets, in peripheral blood, and promoted the activation by upregulating the expression of costimulatory factor CD28. Moreover, 16S sequencing results showed that the effects of CPGS and RPGS were closely related to the regulation of gut microbiota. β-diversity of the microbiome was evidently changed by CPGS and RPGS. The phytoestrogen/polysaccharide-metabolizing bacteria (Adlercreutzia, Parabacteroides, and Prevotella), and an unclassified Desulfovibrionaceae, were remarkably enriched by CPGS or RPGS, and functions involving carbohydrate metabolism, membrane transport, and lipid metabolism were regulated. Moreover, the enrichments of Adlercreutzia, Prevotella, and Desulfovibrionaceae were positively related to the immune regulation by CPGS and RPGS, while that of Parabacteroides displayed a negative correlation. These findings suggested a promising effect of the polysaccharide from sporoderm-broken spore of G. lucidum in immune regulation to promote health control.


BMC Medicine ◽  
2016 ◽  
Vol 14 (1) ◽  
Author(s):  
Laurent Dollé ◽  
Hao Q. Tran ◽  
Lucie Etienne-Mesmin ◽  
Benoit Chassaing

2019 ◽  
Vol 7 (10) ◽  
pp. 440 ◽  
Author(s):  
Bei Yue ◽  
Xiaoping Luo ◽  
Zhilun Yu ◽  
Sridhar Mani ◽  
Zhengtao Wang ◽  
...  

Host health depends on the intestinal homeostasis between the innate/adaptive immune system and the microbiome. Numerous studies suggest that gut microbiota are constantly monitored by the host mucosal immune system, and any slight disturbance in the microbial communities may contribute to intestinal immune disruption and increased susceptibility to inflammatory bowel disease (IBD), a chronic relapsing inflammatory condition of the gastrointestinal tract. Therefore, maintaining intestinal immune homeostasis between microbiota composition and the mucosal immune system is an effective approach to prevent and control IBD. The overall theme of this review is to summarize the research concerning the pathogenesis of IBD, with particular focus on the factors of gut microbiota-mucosal immune interactions in IBD. This is a comprehensive and in-depth report of the crosstalk between gut microbiota and the mucosal immune system in IBD pathogenesis, which may provide insight into the further evaluation of the therapeutic strategies for IBD.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2294 ◽  
Author(s):  
Cynthia Chang ◽  
Janneke HilleRisLambers

Succession and community assembly research overlap in many respects, such as through their focus on how ecological processes like dispersal, environmental filters, and biotic interactions influence community structure. Indeed, many recent advances have been made by successional studies that draw on modern analytical techniques introduced by contemporary community assembly studies. However, community assembly studies generally lack a temporal perspective, both on how the forces structuring communities might change over time and on how historical contingency (e.g. priority effects and legacy effects) and complex transitions (e.g. threshold effects) might alter community trajectories. We believe a full understanding of the complex interacting processes that shape community dynamics across large temporal scales can best be achieved by combining concepts, tools, and study systems into an integrated conceptual framework that draws upon both succession and community assembly theory.


Sign in / Sign up

Export Citation Format

Share Document