scholarly journals Current status and future prospects for enabling chemistry technology in the drug discovery process

F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2426 ◽  
Author(s):  
Stevan W. Djuric ◽  
Charles W. Hutchins ◽  
Nari N. Talaty

This review covers recent advances in the implementation of enabling chemistry technologies into the drug discovery process. Areas covered include parallel synthesis chemistry, high-throughput experimentation, automated synthesis and purification methods, flow chemistry methodology including photochemistry, electrochemistry, and the handling of “dangerous” reagents. Also featured are advances in the “computer-assisted drug design” area and the expanding application of novel mass spectrometry-based techniques to a wide range of drug discovery activities.

2020 ◽  
Author(s):  
Tim Becker ◽  
Kevin Yang ◽  
Juan C Caicedo ◽  
Bridget K Wagner ◽  
Vlado C Dancik ◽  
...  

Recent advances in deep learning enable using chemical structures and phenotypic profiles to accurately predict assay results for compounds virtually, reducing the time and cost of screens in the drug discovery process. The relative strength of high-throughput data sources - chemical structures, images (Cell Painting), and gene expression profiles (L1000) - has been unknown. Here we compare their ability to predict the activity of compounds structurally different from those used in training, using a sparse dataset of 16,979 chemicals tested in 376 assays for a total of 542,648 readouts. Deep learning-based feature extraction from chemical structures provided a remarkable ability to predict assay activity for structures dissimilar to those used for training. Image-based profiling performed even better, but requires wet lab experimentation. It outperformed gene expression profiling, and at lower cost. Furthermore, the three profiling modalities are complementary, and together can predict a wide range of diverse bioactivity, including cell-based and biochemical assays. Our study shows that, for many assays, predicting compound activity from phenotypic profiles and chemical structures is an accurate and efficient way to identify potential treatments in the early stages of the drug discovery process.


Author(s):  
Mark A. Griep ◽  
Marjorie L. Mikasen

ReAction! gives a scientist's and artist's response to the dark and bright sides of chemistry found in 140 films, most of them contemporary Hollywood feature films but also a few documentaries, shorts, silents, and international films. Even though there are some examples of screen chemistry between the actors and of behind-the-scenes special effects, this book is really about the chemistry when it is part of the narrative. It is about the dualities of Dr. Jekyll vs. inventor chemists, the invisible man vs. forensic chemists, chemical weapons vs. classroom chemistry, chemical companies that knowingly pollute the environment vs. altruistic research chemists trying to make the world a better place to live, and, finally, about people who choose to experiment with mind-altering drugs vs. the drug discovery process. Little did Jekyll know when he brought the Hyde formula to his lips that his personality split would provide the central metaphor that would come to describe chemistry in the movies. This book explores the two movie faces of this supposedly neutral science. Watching films with chemical eyes, Dr. Jekyll is recast as a chemist engaged in psychopharmaceutical research but who becomes addicted to his own formula. He is balanced by the often wacky inventor chemists who make their discoveries by trial-and-error.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 546
Author(s):  
Miroslava Nedyalkova ◽  
Vasil Simeonov

A cheminformatics procedure for a partitioning model based on 135 natural compounds including Flavonoids, Saponins, Alkaloids, Terpenes and Triterpenes with drug-like features based on a descriptors pool was developed. The knowledge about the applicability of natural products as a unique source for the development of new candidates towards deadly infectious disease is a contemporary challenge for drug discovery. We propose a partitioning scheme for unveiling drug-likeness candidates with properties that are important for a prompt and efficient drug discovery process. In the present study, the vantage point is about the matching of descriptors to build the partitioning model applied to natural compounds with diversity in structures and complexity of action towards the severe diseases, as the actual SARS-CoV-2 virus. In the times of the de novo design techniques, such tools based on a chemometric and symmetrical effect by the implied descriptors represent another noticeable sign for the power and level of the descriptors applicability in drug discovery in establishing activity and target prediction pipeline for unknown drugs properties.


Sign in / Sign up

Export Citation Format

Share Document