scholarly journals Two linked genes on rice chromosome 2 for F1 pollen sterility in a hybrid between Oryza sativa and O. glumaepatula

2014 ◽  
Vol 64 (4) ◽  
pp. 309-320 ◽  
Author(s):  
Mitsukazu Sakata ◽  
Yoshiyuki Yamagata ◽  
Kazuyuki Doi ◽  
Atsushi Yoshimura
2021 ◽  
Vol 11 ◽  
Author(s):  
Mitsukazu Sakata ◽  
Noriko Takano-Kai ◽  
Yuta Miyazaki ◽  
Hiroyuki Kanamori ◽  
Jianzhong Wu ◽  
...  

Postzygotic reproductive isolation maintains species integrity and uniformity and contributes to speciation by restricting the free gene flow between divergent species. In this study we identify causal genes of two Mendelian factors S22A and S22B on rice chromosome 2 inducing F1 pollen sterility in hybrids between Oryza sativa japonica-type cultivar Taichung 65 (T65) and a wild relative of rice species Oryza glumaepatula. The causal gene of S22B in T65 encodes a protein containing DUF1668 and gametophytically expressed in the anthers, designated S22B_j. The O. glumaepatula allele S22B-g, allelic to S22B_j, possesses three non-synonymous substitutions and a 2-bp deletion, leading to a frameshifted translation at the S22B C-terminal region. Transcription level of S22B-j and/or S22B_g did not solely determine the fertility of pollen grains by genotypes at S22B. Western blotting of S22B found that one major band with approximately 46 kDa appeared only at the mature stage and was reduced on semi-sterile heterozygotes at S22B, implying that the 46 kDa band may associated in hybrid sterility. In addition, causal genes of S22A in T65 were found to be S22A_j1 and S22A_j3 encoding DUF1668-containing protein. The allele of a wild rice species Oryza meridionalis Ng at S22B, designated S22B_m, is a loss-of-function allele probably due to large deletion of the gene lacking DUF1668 domain and evolved from the different lineage of O. glumaepatula. Phylogenetic analysis of DUF1668 suggested that many gene duplications occurred before the divergence of current crops in Poaceae, and loss-of-function mutations of DUF1668-containing genes represent the candidate causal genetic events contributing to hybrid incompatibilities. The duplicated DUF1668-domain gene may provide genetic potential to induce hybrid incompatibility by consequent mutations after divergence.


Planta ◽  
2009 ◽  
Vol 231 (3) ◽  
pp. 559-570 ◽  
Author(s):  
Yong Wang ◽  
Zheng Zheng Zhong ◽  
Zhi Gang Zhao ◽  
Ling Jiang ◽  
Xiao Feng Bian ◽  
...  

Genetica ◽  
2006 ◽  
Vol 127 (1-3) ◽  
pp. 295-302 ◽  
Author(s):  
Zhi-Sheng Zhang ◽  
Yong-Gen Lu ◽  
Xiang-Dong Liu ◽  
Jiu-Huan Feng ◽  
Gui-Quan Zhang

2001 ◽  
Vol 11 (7) ◽  
pp. 1167-1174
Author(s):  
Klaus Mayer ◽  
George Murphy ◽  
Renato Tarchini ◽  
Rolf Wambutt ◽  
Guido Volckaert ◽  
...  

The nucleotide sequence was determined for a 340-kb segment of rice chromosome 2, revealing 56 putative protein-coding genes. This represents a density of one gene per 6.1 kb, which is higher than was reported for a previously sequenced segment of the rice genome. Sixteen of the putative genes were supported by matches to ESTs. The predicted products of 29 of the putative genes showed similarity to known proteins, and a further 17 genes showed similarity only to predicted or hypothetical proteins identified in genome sequence data. The region contains a few transposable elements: one retrotransposon, and one transposon. The segment of the rice genome studied had previously been identified as representing a part of rice chromosome 2 that may be homologous to a segment of Arabidopsis chromosome 4. We confirmed the conservation of gene content and order between the two genome segments. In addition, we identified a further four segments of the Arabidopsis genome that contain conserved gene content and order. In total, 22 of the 56 genes identified in the rice genome segment were represented in this set of Arabidopsis genome segments, with at least five genes present, in conserved order, in each segment. These data are consistent with the hypothesis that theArabidopsis genome has undergone multiple duplication events. Our results demonstrate that conservation of the genome microstructure can be identified even between monocot and dicot species. However, the frequent occurrence of duplication, and subsequent microstructure divergence, within plant genomes may necessitate the integration of subsets of genes present in multiple redundant segments to deduce evolutionary relationships and identify orthologous genes.


2004 ◽  
Vol 4 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Assaf Distelfeld ◽  
Cristobal Uauy ◽  
Sofia Olmos ◽  
Ana R. Schlatter ◽  
Jorge Dubcovsky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document