Various Eicosanoids Modulate the Cellular and Humoral Immune Responses of the Beet Armyworm,Spodoptera exigua

2009 ◽  
Vol 73 (9) ◽  
pp. 2077-2084 ◽  
Author(s):  
Sony SHRESTHA ◽  
Yonggyun KIM
2020 ◽  
Author(s):  
Shabbir Ahmed ◽  
Yonggyun Kim

ABSTRACTSeveral prostaglandins (PGs) and PG-synthesizing enzymes have been identified from insects. PGs can mediate cellular and humoral immune responses. However, uncontrolled and prolonged immune responses might have adverse effects on survival. PG catabolism in insects has not been reported. Here, using a transcriptomic analysis, we predicted two PG-degrading enzymes, PG dehydrogenase (SePGDH) and PG reductase (SePGR), in Spodoptera exigua, a lepidopteran insect. SePGDH and SePGR expression levels were upregulated after immune challenge. However, their expression peaks occurred after those of PG biosynthesis genes such as PGE2 synthase or PGD2 synthase. Indeed, SePGDH and SePGR expression levels were upregulated after injection with PGE2 or PGD2. In contrast, such upregulated expression was not detected after injection with leukotriene B4, an eicosanoid inflammatory mediator. RNA interference (RNAi) using double-stranded RNAs specific to SePGDH or SePGR suppressed their expression levels. The RNAi treatment resulted in an excessive and fatal melanization of larvae even after a non-pathogenic bacterial infection. Phenoloxidase (PO) activity mediating the melanization in larval plasma was induced by bacterial challenge or PGE2 injection. Although the induced PO activity decreased after 8 h in control, larvae treated with dsRNAs specific to PG-degrading enzyme genes kept the high PO activities for a longer period compared to control larvae. These results suggest that SePGDH and SePGR are responsible for PG degradation at a late phase of immune responses.


2020 ◽  
Vol 223 (21) ◽  
pp. jeb233221 ◽  
Author(s):  
Shabbir Ahmed ◽  
Yonggyun Kim

ABSTRACTSeveral prostaglandins (PGs) and PG-synthesizing enzymes have been identified from insects. PGs mediate cellular and humoral immune responses. However, uncontrolled and prolonged immune responses might have adverse effects on survival. PG catabolism in insects has not been reported. Here, using a transcriptomic analysis, we predicted the presence of two PG-degrading enzymes, PG dehydrogenase (SePGDH) and PG reductase (SePGR), in Spodoptera exigua, a lepidopteran insect. SePGDH and SePGR expression levels were upregulated after immune challenge. However, their expression peaks occurred after those of PG biosynthesis genes, such as those encoding PGE2 synthase or PGD2 synthase. SePGDH and SePGR expression levels were upregulated after injection with PGE2 or PGD2. In contrast, such upregulated expression was not detected after injection with leukotriene B4, an eicosanoid inflammatory mediator. RNA interference (RNAi) using double-stranded RNAs specific to SePGDH or SePGR suppressed their expression levels. The RNAi treatment resulted in an excessive and fatal melanization of larvae even after a non-pathogenic bacterial infection. Phenoloxidase (PO) activity mediating the melanization in larval plasma was induced by bacterial challenge or PGE2 injection. Although the induced PO activity decreased after 8 h in control larvae, those treated with dsRNAs specific to PG-degrading enzyme genes kept a high PO activity for a longer period. These results suggest that SePGDH and SePGR are responsible for PG degradation at a late phase of the immune response.


1997 ◽  
Vol 27 (11) ◽  
pp. 1285-1291 ◽  
Author(s):  
M. N. KOLOPP-SARDA ◽  
D. A. MONERET-VAUTRIN ◽  
B. GOBERT ◽  
G. KANNY ◽  
M. BRODSCHII ◽  
...  

2021 ◽  
Author(s):  
Michael Whitehead ◽  
Andrew Osborne ◽  
Patrick Yu‐Wai‐Man ◽  
Keith Martin

2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 271-272
Author(s):  
Janna Shapiro ◽  
Helen Kuo ◽  
Rosemary Morgan ◽  
Huifen Li ◽  
Sabra Klein ◽  
...  

Abstract Older adults bear the highest burden of severe disease and complications associated with seasonal influenza, with annual vaccination serving as the best option for protection. Variability in vaccine efficacy exists, yet the host factors that affect immune responses to inactivated influenza vaccines (IIV) are incompletely understood. We hypothesized that sex and frailty interact to affect vaccine-induced humoral responses among older adults. To test this hypothesis, community-dwelling adults above 75 years of age were recruited yearly, assessed for frailty (as defined by the Cardiovascular Health Study criteria), and vaccinated with the high-dose trivalent IIV. Humoral immune responses were evaluated via hemagglutination inhibition titers. The study began during the 2014-2015 influenza season, with yearly cohorts ranging from 76-163 individuals. A total of 617 vaccinations were delivered from 2014-2019. In preliminary analyses, the outcome of interest was seroconversion, defined as ≥ 4-fold rise in titers. Crude odds ratios suggest that females are more likely to seroconvert to influenza A strains (H1N1: OR = 1.39, (0.98-1.96) ; H3N2: 1.17 (0.85 – 1.62)), while males are more likely to seroconvert to the B strain (OR = 0.85 (0.60 – 1.22)). Furthermore, this sex difference was modified by frailty – for example, the odds of seroconversion to H1N1 were 65% higher for females than males among those who were nonfrail, and only 30% higher among females who were frail. Together, these results suggest that sex and frailty interact to impact immune responses to influenza vaccines. These findings may be leveraged to better protect vulnerable populations.


Sign in / Sign up

Export Citation Format

Share Document