scholarly journals Intergeneric transfer of the pullulanase gene between Klebsiella aerogenes and Escherichia coli by in vivo genetic manipulation.

1984 ◽  
Vol 48 (6) ◽  
pp. 1451-1458 ◽  
Author(s):  
Noboru TAKIZAWA ◽  
Yoshikatsu MUROOKA
1998 ◽  
Vol 180 (3) ◽  
pp. 571-577 ◽  
Author(s):  
Li-Mei Chen ◽  
Thomas J. Goss ◽  
Robert A. Bender ◽  
Simon Swift ◽  
Stanley Maloy

ABSTRACT The nac gene product is a LysR regulatory protein required for nitrogen regulation of several operons fromKlebsiella aerogenes and Escherichia coli. We used P22 challenge phage carrying the put control region from K. aerogenes to identify the nucleotide residues important for nitrogen assimilation control protein (NAC) binding in vivo. Mutations in an asymmetric 30-bp region prevented DNA binding by NAC. Gel retardation experiments confirmed that NAC specifically binds to this sequence in vitro, but NAC does not bind to the corresponding region from the put operon of Salmonella typhimurium, which is not regulated by NAC.


1999 ◽  
Vol 181 (3) ◽  
pp. 934-940 ◽  
Author(s):  
Wilson B. Muse ◽  
Robert A. Bender

ABSTRACT The nitrogen assimilation control protein (NAC) fromKlebsiella aerogenes or Escherichia coli(NACK or NACE, respectively) is a transcriptional regulator that is both necessary and sufficient to activate transcription of the histidine utilization (hut) operon and to repress transcription of the glutamate dehydrogenase (gdh) operon in K. aerogenes. Truncated NAC polypeptides, generated by the introduction of stop codons within thenac open reading frame, were tested for the ability to activate hut and repress gdh in vivo. Most of the NACK and NACE fragments with 100 or more amino acids (wild-type NACK and NACE both have 305 amino acids) were functional in activating hut and repressing gdh expression in vivo. Full-length NACK and NACE were isolated as chimeric proteins with the maltose-binding protein (MBP). NACK and NACE released from such chimeras were able to activatehut transcription in a purified system in vitro, as were NACK129 and NACE100 (a NACKfragment of 129 amino acids and a NACE fragment of 100 amino acids) released from comparable chimeras. A set of NACE and NACK fragments carrying nickel-binding histidine tags (his6) at their C termini were also generated. All such constructs derived from NACE were insoluble, as was NACE itself. Of the his6-tagged constructs derived from NACK, NACK100 was inactive, but NACK120 was active. Several NAC fragments were tested for dimerization. NACK120-his6 and NACK100-his6 were dimers in solution. MBP-NACK and MBP-NACK129 were monomers in solution but dimerized when the MBP was released by cleavage with factor Xa. MBP-NACE was readily cleaved by factor Xa, but the resulting NACE was also degraded by the protease. However, MBP-NACE-his6 was completely resistant to cleavage by factor Xa, suggesting an interaction between the C and N termini of this protein.


PLoS Biology ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. e3001306
Author(s):  
Peter L. Freddolino ◽  
Haley M. Amemiya ◽  
Thomas J. Goss ◽  
Saeed Tavazoie

Free-living bacteria adapt to environmental change by reprogramming gene expression through precise interactions of hundreds of DNA-binding proteins. A predictive understanding of bacterial physiology requires us to globally monitor all such protein–DNA interactions across a range of environmental and genetic perturbations. Here, we show that such global observations are possible using an optimized version of in vivo protein occupancy display technology (in vivo protein occupancy display—high resolution, IPOD-HR) and present a pilot application to Escherichia coli. We observe that the E. coli protein–DNA interactome organizes into 2 distinct prototypic features: (1) highly dynamic condition-dependent transcription factor (TF) occupancy; and (2) robust kilobase scale occupancy by nucleoid factors, forming silencing domains analogous to eukaryotic heterochromatin. We show that occupancy dynamics across a range of conditions can rapidly reveal the global transcriptional regulatory organization of a bacterium. Beyond discovery of previously hidden regulatory logic, we show that these observations can be utilized to computationally determine sequence specificity models for the majority of active TFs. Our study demonstrates that global observations of protein occupancy combined with statistical inference can rapidly and systematically reveal the transcriptional regulatory and structural features of a bacterial genome. This capacity is particularly crucial for non-model bacteria that are not amenable to routine genetic manipulation.


2006 ◽  
Vol 54 (3) ◽  
pp. 351-358 ◽  
Author(s):  
P. Pepó

Plant regeneration via tissue culture is becoming increasingly more common in monocots such as maize (Zea mays L.). Pollen (gametophytic) selection for resistance to aflatoxin in maize can greatly facilitate recurrent selection and the screening of germplasm for resistance at much less cost and in a shorter time than field testing. In vivo and in vitro techniques have been integrated in maize breeding programmes to obtain desirable agronomic attributes, enhance the genes responsible for them and speed up the breeding process. The efficiency of anther and tissue cultures in maize and wheat has reached the stage where they can be used in breeding programmes to some extent and many new cultivars produced by genetic manipulation have now reached the market.


Author(s):  
Ирина Владимировна Акулина ◽  
Светлана Ивановна Павлова ◽  
Ирина Семеновна Степаненко ◽  
Назира Сунагатовна Карамова ◽  
Александр Владиславович Сергеев ◽  
...  
Keyword(s):  

Проведено токсикологическое исследование соединений с антибактериальными свойствами из группы терпенов ментанового ряда в условиях in vitro и in vivo: лимонена (B34), его производного (+)-1,2-оксида лимонена (B60) и серосодержащего монотерпенового соединения 2-(1’-гидрокси-4’-изопренил-1’-метилциклогексил-2’-тио)метилэтаноата (B65). В условиях in vitro (культура опухолевых клеток HeLa) изучаемые монотерпены в диапазоне концентраций 2 – 200 мкг/мл обладали цитотоксичностью. Ингибирующая концентрация (ИК50) для B34 составила 231 (167 – 295) мкг/мл, для B60 – 181 (105 – 257) мкг/мл, ИК50 B65 – 229 (150 – 308) мкг/мл. Исследование генотоксичности показало, что B34 и B65 в диапазоне концентраций 50 – 1000 мкг/мл не индуцируют SOS мутагенез в клетках Escherichia coli PQ37, тогда как B60 в концентрациях 500 и 1000 мкг/мл проявляет генотоксичность. In vivo в остром эксперименте на беспородных мышах установлена низкая токсичность B34 и его производных при различных путях введения. Наименьший показатель острой токсичности имеет B65, в связи с чем дополнительно на крысах проведено изучение его хронической токсичности. Ежедневное внутрижелудочное введение B65 в разовых дозах, составляющих 1/10 и 1/20 ЛД50 (1000 мг/кг и 500 мг/кг), в течение 1 мес не вызывало гибели животных, значимых нарушений общего состояния, изменения динамики массы тела, морфопатологических изменений. Внутрижелудочное введение B65 крысам в высокой токсической дозе 2000 мг/кг (1/5 ЛД50) в течение месяца вызывает патоморфологические изменения структуры печени.


2020 ◽  
Vol 2 (2) ◽  
pp. 61-68
Author(s):  
Agnina Listya Anggraini ◽  
Ratih Dewi Dwiyanti ◽  
Anny Thuraidah

Infection is a disease caused by the presence of pathogenic microbes, including Staphylococcus aureus and Escherichia coli. Garlic (Allium sativum L.) has chemical contents such as allicin, alkaloids, flavonoids, saponins, tannins, and steroids, which can function as an antibacterial against Staphylococcus aureus and Escherichia coli. This study aims to determine the antibacterial properties of garlic extract powder against Staphylococcus aureus and Escherichia coli. This research is the initial stage of the development of herbal medicines to treat Staphylococcus aureus and Escherichia coli infections. The antibacterial activity test was carried out by the liquid dilution method. The concentrations used were 30 mg/mL, 40 mg/mL, 50 mg/mL, 60 mg/mL and 70 mg/mL. The results showed that the Minimum Inhibitory Concentration (MIC) against Staphylococcus aureus and Escherichia coli was 40 mg/mL and 50 mg / mL. Minimum Bactericidal Concentration (MBC) results for Staphylococcus aureus and Escherichia coli are 50 mg/mL and 70 mg/mL. Based on the Simple Linear Regression test, the R2 value of Staphylococcus aureus and Escherichia coli is 0.545 and 0.785, so it can be concluded that there is an effect of garlic extract powder on the growth of Staphylococcus aureus and Escherichia coli by 54.5% and 78.5%. Garlic (Allium sativum L.) extract powder has potential as herbal medicine against bacterial infections but requires further research to determine its effect in vivo.


Sign in / Sign up

Export Citation Format

Share Document