scholarly journals Assessment of the ecological and trophic status of Lake Bafa (Turkey) based on phytoplankton

2021 ◽  
Vol 38 (2) ◽  
pp. 135-146
Author(s):  
Atakan Sukatar ◽  
Alperen Ertaş ◽  
Rıza Akgül ◽  
İnci Tüney Kızılkaya

Phytoplankton groups are one of the major quality element to be used in the evaluation of the trophic and ecological state of freshwater ecosystems according to the EU Water Framework Directive. This research was made to assess the trophic and ecological status of Lake Bafa in Turkey, on the basis of phytoplankton communities. Büyük Menderes River is one of the most important factor that carries pollutants to Lake Bafa. The eight sampling station were assigned to evaluate the ecological and trophic state of the lake. Phytoplankton species were collected monthly for 2 years study period. Most commonly used phtoplankton indices Q index and Carlson’s Trophic State Index (TSI), and different versions of diversity indices were used to estimate trophic and ecological state of the lake. Similarities between the sampling stations were clustured by using the unweighted pair group method using arithmetic average (UPGMA), based on phytoplankton communities. Correlations between the applied indices were determined by using Pearson Correlation. After the identification of collected phytoplanktons, total of 63 taxa which belong to classis of Cyanophyceae (11.2%), Bacillariophyceae (49.2%), Chlorophyceae (23.8%), Xanthophyceae (1.5%), Euglenophyceae (11.2%) and Dinophyceae (3.1%) were detected. The 1st and 2nd stations were the most similar stations to each other (88%) according to phytoplankton communities. Secchi disc depth (SD) and TP played an important role in the distribution of phytoplankton species in Lake Bafa. The highest significant positive correlation was determined between Q and TSI (r = 0.987, p˂0.01). Considering the TDI values in the phytoplankton composition of the lake, it can be said that although the productivity status of the studied lake is still “mesotrophic”, it has a tendency towards “eutrophic” state. According to the Q values, the first five stations reflect the moderate ecological state, while the 6th, 7th and 8th stations represent the poor ecological state.

Toxins ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 259 ◽  
Author(s):  
Iwona Bubak ◽  
Sylwia Śliwińska-Wilczewska ◽  
Paulina Głowacka ◽  
Agnieszka Szczerba ◽  
Katarzyna Możdżeń

The contribution of picocyanobacteria to summer phytoplankton blooms, accompanied by an ecological crisis, is a new phenomenon in Europe. This issue requires careful investigation. We studied allelopathic activity of freshwater picocyanobacterium Synechococcus sp. on phytoplankton assemblages from three freshwater lakes. In this study, the allelopathic activity of the Synechococcus sp. on the total abundance, biomass, as well as structure of the phytoplankton assemblages were investigated. Our results indicated that addition of exudates obtained from Synechococcus sp. affected the number of cells and biomass of the phytoplankton communities; the degree of inhibition or stimulation was different for each species, causing a change in the phytoplankton abundance and dominance during the experiment. We observed that some group of organisms (especially cyanobacteria from the genus Aphanothece, Limnothrix, Microcystis, and Synechococcus) showed tolerance for allelopathic compounds produced and released by Synechococcus sp. It is also worth noting that in some samples, Bacillariophyceae (e.g., Amphora pediculus, Navicula pygmaea, and Nitzschia paleacea) were completely eliminated in the experimental treatments, while present in the controls. This work demonstrated that the allelopathic activity exhibited by the Synechococcus sp. is probably one of the major competitive strategies affecting some of the coexisting phytoplankton species in freshwater ecosystems. To our best knowledge this is the first report of the allelopathic activity of Synechococcus sp. in the freshwater reservoirs, and one of the few published works showing allelopathic properties of freshwater picocyanobacteria on coexisting phytoplankton species.


2017 ◽  
Vol 15 (2) ◽  
Author(s):  
Sulastri Sulastri

Perluasan lahan pertanian dan pemukiman di daerah aliran sungai dan pemanfaatan danau yang intensif di Jawa menimbulkan masalah kualitas seperti eutrofikasi yang dicirikan oleh melimpahnya jenis fitoplankton tertentu. Penelitian ini bertujuan untuk mengetahui karakteristik komunitas fitoplankton dan faktor-faktor lingkungan yang menentukan distribusinya di danau-danau kecil di Pulau Jawa. Penelitian dilakukan di 12 danau kecil di Jawa pada tahun 2006. Parameter kualitas air diukur secara langsung menggunakan Horiba U 10. Alkalinitas, nutrient, dan klorofil-a dianalisis menggunakan standard method. Fitoplankton dianaliis secara kuantitatif menggunakan metode Lackey Drop Micro Transect termodifikasi. Pengelompokan komposisi fitoplankton dengan faktor lingkungan menggunakan principle component analysis dan keterkaitan distribusi jenis-jenis fitoplankton dengan faktor lingkungan dianalisis menggunakan canonical corespondence analysis. Komposisi fitoplankton pada umumnya didominansi oleh kelompok Chrysophyta. Pada umumnya kelimpahan fitoplankton dan indeks status trofik (trophic state index) masing-masing >15.000 ind./L dan >50, menunjukkan perairan danau yang subur, sedangkan indeks keragaman dan indeks dominan fitoplankton masing-masing berkisar 0,787-3,174 dan 0,15-0,941. Analisis principle component analysis menunjukkan bahwa alkalinitas, suhu dan pH mengelompokkan distribusi Chrysophyta and Euglenophyta. Nitrat, Total N, dan rasio TN/TP mengelompokkan distribusi Chlorophyta, Cyanophyta, dan Phyrrophyta. Analisis canonical corespondence analysis menunjukkan beberapa parameter lingkungan menentukan distribusi jenis-jenis fitoplankton di danau kecil di Jawa. The extension of agriculture area as well as urban and intensive utilization of lake in Java may rise quality problem such as eutrophication indicated by the high abundance of certain species. This study was aimed to elucidate the phytoplankton community characteristic and influence of environmental factors to their distribution in small lakes of Java. The study was conducted at 12 small lakes of Java in 2006. Water quality parameters were measured in situ using Horiba U-10 water quality checker. Alkalinity, nutrient and chlorophyll-a were analyzed according to Standard Method. Quantitative analysis of phytoplankton was done using modified Lackey Drop Micro transect. Principle component analysis was used to detect the major environmental variable that classify the composition of phytoplankton. Canonical component analysis was used to elucidate the relationship between phytoplankton species and their environmental factors. The results show that in general Chrysophyta was a dominant group of phytoplankton composition of small lakes of Java. In most cases, the phytoplankton abundance was more than 15,000 ind./L and trophic state index was >50 indicating a eutrophic waters. The diversity and dominant indexes of phytoplankton ranged 0.787-3.174 and 0.15- 0.941, respectively. The principle component analysis show that alkalinity, temperature, and pH determined in classifying the Chrysophyta while nitrate, TN, and TN/TP ratio were determinants in classifiying the Cyanophyta, Chlorophyta, and Phyrophyta group. Canonical component analysis analysis show that some environmental factors determined the distribution of phytoplankton species in small lakes of Java.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5731 ◽  
Author(s):  
Łukasz Sługocki ◽  
Robert Czerniawski

BackgroundLake depth and the consequent mixing regime and thermal structure have profound effects on ecosystem functioning, because depth strongly affects the availability of nutrients, light, and oxygen. All these conditions influence patterns of zooplankton diversity. Zooplankton are a key component of the aquatic environment and are essential to maintaining natural processes in freshwater ecosystems. However, zooplankton biodiversity can be different regard to depth, mixing type and trophic state. Therefore, the aim of this study was to examine how depth and mixing regime affect zooplankton diversity in lakes. We also investigated the vertical distribution of diversity across a trophic gradient of lakes.MethodsA total of 329 zooplankton samples from 79 temperate lakes (36 polymictic and 43 dimictic) were collected. The biodiversity of zooplankton was calculated using species richness (SR) and the Shannon index (SI). An index based on Secchi disc visibility was used to determine the trophic state index (TSISD) of lakes. The one-way ANOVA with Duncan’s post hoc test were used to determine differences in zooplankton biodiversity between mictic lake types and thermal layers. To find the best predictors for zooplankton biodiversity a multiple stepwise regression was used. The rarefaction method was used to evaluate the impact of mixing types, thermal layers, and the TSISDon zooplankton biodiversity indices. A Sørensen similarity analysis and nonmetric multidimensional scaling (NMDS) were performed to describe the similarity patterns in species composition among lakes.ResultsWe identified a total of 151 taxa from 36 polymictic and 43 dimictic lakes. Lake depth and the TSISDwere significantly correlated with the biodiversity of lake zooplankton. The results of ANOVA and Duncan tests show that mictic type and thermal zones had a significant effect on zooplankton biodiversity. The rarefaction curve showed significant differences in zooplankton biodiversity, which was greater in lakes with lower trophic state. Ordination by NMDS showed clustering of different mictic types, thermal layers, and composition changes throughout the TSISDprofile. Moreover, we determined that polymictic lakes are more heterogeneous than dimictic lakes in regard to zooplankton similarities.DiscussionBoth mictic lake types were characterized by varying levels of zooplankton biodiversity, which is shaped by the communities’ response to lake depth, thermal layers and TSISDvalues. The zooplankton SR and SI (during daylight hours) depends greatly on the mixing type. Lake type also indicates the importance of the metalimnion in shaping zooplankton biodiversity in dimictic lakes. In addition, data from NW Polish lakes indicated that the increase of the TSISDleads to taxonomic shifts and has a negative effect on the diversity of all groups of zooplankton.


2018 ◽  
Vol 41 (3) ◽  
pp. 43-54 ◽  
Author(s):  
Noriko FUTATSUGI ◽  
Yuichi MIYABARA ◽  
Yasunori SAITO ◽  
Takayuki HANAZATO ◽  
Ho-Dong PARK

2012 ◽  
Vol 12 (4) ◽  
pp. 114-124 ◽  
Author(s):  
Frederico Guilherme de Souza Beghelli ◽  
André Cordeiro Alves dos Santos ◽  
Maria Virgínia Urso-Guimarães ◽  
Maria do Carmo Calijuri

The purpose of this work was to verify the benthic macroinvertebrates community responses through environmental factors along a headwater tropical reservoir. Samplings were taken with a Van-Veen grab along the reservoir in littoral and profundal regions and in the headwater, next to the dam and the middle of the reservoir. Samples were taken during both wet and dry seasons. Dissolved oxygen concentrations, electric conductivity, temperature and pH near the sediment have been performed in situ, at every sampling station by using a multiprobe and Secchi disc. Total water phosphorus and chlorophyll a concentrations were analyzed to determine the trophic state index. Sediment's organic matter, total phosphorus, nitrogen concentrations and granulometric composition were measured. In order to verify which environmental variables would have more influence over the benthic macroinvertebrates community, a canonical correspondence analysis (CCA) was performed. The total number of recorded taxa was 28. Among them, the family Chironomidae (Diptera) was the richest group (19 taxa). It can be proposed that the benthic macroinvertebrates community may be influenced by environmental conditions such as nutrient and organic matter availability, as well as dissolved oxygen concentration. Macroinvertebrates are adequate bioindicators of water quality due to their sensibility to environmental changes mentioned before. Chironomus sp, Limnodrilus hoffmeisteri and Branchiura sowerbyi comprises a group that can be considered bio-indicators of eutrophic conditions. A second group can be considered as indicator of mesotrophic conditions. The presence of two or more members from that group which comprises Tanytarsini spp, Fissimentum sp, Pelomus sp and Goeldichironomus sp, like predominant taxa, may indicates mesotrophic conditions.


2017 ◽  
Vol 19 (2) ◽  
pp. 113
Author(s):  
Kusuma Wardani Laksitaningrum ◽  
Wirastuti Widyatmanti

<p align="center"><strong>ABSTRAK</strong></p><p class="abstrak">Waduk Gajah Mungkur (WGM) adalah bendungan buatan yang memiliki luas genangan maksimum 8800 ha, terletak di Desa Pokoh Kidul, Kecamatan Wonogiri, Kabupaten Wonogiri. Kondisi perairan WGM dipengaruhi oleh faktor klimatologis, fisik, dan aktivitas manusia yang dapat menyumbang nutrisi sehingga mempengaruhi status trofiknya. Tujuan dari penelitian ini adalah mengkaji kemampuan citra Landsat 8 OLI untuk memperoleh parameter-parameter yang digunakan untuk menilai status trofik, menentukan dan memetakan status trofik yang diperoleh dari citra Landsat 8 OLI, dan mengevaluasi hasil pemetaan dan manfaat citra penginderaan jauh untuk identifikasi status trofik WGM. Identifikasi status trofik dilakukan berdasarkan metode <em>Trophic State Index</em> (TSI) Carlson (1997) menggunakan tiga parameter yaitu kejernihan air, total fosfor, dan klorofil-a. Model yang diperoleh berdasar pada rumus empiris dari hasil uji regresi antara pengukuran di lapangan dan nilai piksel di citra Landsat 8 OLI. Model dipilih berdasarkan nilai koefisien determinasi (R<sup>2</sup>) tertinggi. Hasil penelitian merepresentasikan bahwa nilai R<sup>2</sup> kejernihan air sebesar 0,813, total fosfor sebesar 0,268, dan klorofil-a sebesar 0,584. Apabila nilai R<sup>2 </sup>mendekati 1, maka semakin baik model regresi dapat menjelaskan suatu parameter status trofik. Berdasarkan hasil kalkulasi diperoleh distribusi yang terdiri dari kelas eutrofik ringan, eutrofik sedang, dan eutrofik berat yaitu pada rentang nilai indeks 50,051 – 80,180. Distribusi terbesar adalah eutrofik sedang. Hal tersebut menunjukkan tingkat kesuburan perairan yang tinggi dan dapat membahayakan makhluk hidup lain.</p><p><strong>Kata kunci: </strong>Waduk Gajah Mungkur, citra Landsat 8 OLI, regresi, TSI, status trofik</p><p class="judulABS"><strong>ABSTRACT</strong></p><p class="Abstrakeng">Gajah Mungkur Reservoir is an artificial dam that has a maximum inundated areas of 8800 ha, located in Pokoh Kidul Village, Wonogiri Regency. The reservoir’s water conditions are affected by climatological and physical factors, as well as human activities that can contribute to nutrients that affect its trophic state. This study aimed to assess the Landsat 8 OLI capabilities to obtain parameters that are used to determine its trophic state, identifying and mapping the trophic state based on parameters derived from Landsat 8 OLI, and evaluating the results of the mapping and the benefits of remote sensing imagery for identification of its trophic state. Identification of trophic state is based on Trophic State Index (TSI) Carlson (1997), which uses three parameters there are water clarity, total phosphorus, and chlorophyll-a. The model is based on an empirical formula of regression between measurements in the field and the pixel values in Landsat 8 OLI. Model is selected on the highest value towards coefficient of determination (R<sup>2</sup>). The results represented that R<sup>2</sup> of water clarity is 0.813, total phosphorus is 0.268, and chlorophyll-a is 0.584. If R<sup>2</sup> close to 1, regression model will describe the parameters of the trophic state better. Based on the calculation the distribution consists of mild eutrophic, moderate eutrophic, and heavy eutrophic that has index values from 50.051 to 80.18. The most distribution is moderate eutrophication, and it showed the high level of trophic state and may harm other living beings.</p><p><strong><em>Keywords: </em></strong><em>Gajah Mungkur Reservoir, </em><em>L</em><em>andsat 8 OLI satellite imagery, regression, TSI, trophic state</em></p>


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2117
Author(s):  
Su-mi Kim ◽  
Hyun-su Kim

The variations in water quality parameters and trophic status of a multipurpose reservoir in response to changing intensity of monsoon rain was investigated by applying a trophic state index deviation (TSID) analysis and an empirical regression model to the data collected in two periods from 2014 to 2017. The reservoir in general maintained mesotrophic conditions, and Carlson’s trophic state index (TSIc) was affected most by TSITP. Nutrient concentrations, particularly phosphorus, did not show strong correlations with precipitation, particularly in the period with weak monsoon, and a significant increase in total phosphorus (TP) was observed in Spring 2015, indicating the possibility of internal phosphorus loading under decreased depth and stability of water body due to a lack of precipitation. TSIChl was higher than TSISD in most data in period 1 when a negligible increase in precipitation was observed in the monsoon season while a significant fraction in period 2 showed the opposite trend. Phytoplankton growth was not limited by nutrient limitation although nutrient ratios (N/P) of most samples were significantly higher than 20, indicating phosphorus-limited condition. TSID and regression analysis indicated that phytoplankton growth was limited by zooplankton grazing in the Spring, and that cell concentrations and community structure in the monsoon and post-monsoon season were controlled by the changing intensity of the monsoon, as evidenced by the positive and negative relationships between community size and cyanobacterial population with the amount of precipitation in the Summer, respectively. The possibility of contribution from internal loading and an increase in cyanobacterial population associated with weak monsoon, in addition to potential for nutrient enrichment in the post-monsoon season, implies a need for the application of more stringent water quality management in the reservoir that can handle all potential scenarios of eutrophication.


2021 ◽  
Vol 13 (10) ◽  
pp. 1988
Author(s):  
Minqi Hu ◽  
Ronghua Ma ◽  
Zhigang Cao ◽  
Junfeng Xiong ◽  
Kun Xue

Remote monitoring of trophic state for inland waters is a hotspot of water quality studies worldwide. However, the complex optical properties of inland waters limit the potential of algorithms. This research aims to develop an algorithm to estimate the trophic state in inland waters. First, the turbid water index was applied for the determination of optical water types on each pixel, and water bodies are divided into two categories: algae-dominated water (Type I) and turbid water (Type II). The algal biomass index (ABI) was then established based on water classification to derive the trophic state index (TSI) proposed by Carlson (1977). The results showed a considerable precision in Type I water (R2 = 0.62, N = 282) and Type II water (R2 = 0.57, N = 132). The ABI-derived TSI outperformed several band-ratio algorithms and a machine learning method (RMSE = 4.08, MRE = 5.46%, MAE = 3.14, NSE = 0.64). Such a model was employed to generate the trophic state index of 146 lakes (> 10 km2) in eastern China from 2013 to 2020 using Landsat-8 surface reflectance data. The number of hypertrophic and oligotrophic lakes decreased from 45.89% to 21.92% and 4.11% to 1.37%, respectively, while the number of mesotrophic and eutrophic lakes increased from 12.33% to 23.97% and 37.67% to 52.74%. The annual mean TSI for the lakes in the lower reaches of the Yangtze River basin was higher than that in the middle reaches of the Yangtze River and Huai River basin. The retrieval algorithm illustrated the applicability to other sensors with an overall accuracy of 83.27% for moderate-resolution imaging spectroradiometer (MODIS) and 82.92% for Sentinel-3 OLCI sensor, demonstrating the potential for high-frequency observation and large-scale simulation capability. Our study can provide an effective trophic state assessment and support inland water management.


Sign in / Sign up

Export Citation Format

Share Document