Complex Product Development Approach Considering Value and Cost for the Stakeholders Along the Product Lifecycle

Author(s):  
Tertuliano Ribeiro Pinto ◽  
Geilson Loureiro ◽  
Luiz Eduardo Vergueiro Loures da Costa
2011 ◽  
Vol 346 ◽  
pp. 96-102
Author(s):  
Xiao Liang Jia

In connection with characteristics of complex product development, in order to solve problems of long product development cycle, multi-collaborative firms, difficult to control product quality in manufacturing firms, the approach of complex product lifecycle quality management technology based on the collaboration of 3D virtual product and physical product is put forward. The connotation of complex product lifecycle quality management technology based on 3D product model is analyzed. Complex product lifecycle quality management model based on 3D product model is founded also. Base on 3D virtual product model and PLM technology, key technologies on complex product lifecycle quality management are described in detail.


2017 ◽  
Vol 5 (1) ◽  
pp. 54-67 ◽  
Author(s):  
Alain Pfouga ◽  
Josip Stjepandić

Abstract With their practical introduction by the 1970s, virtual product data have emerged to a primary technical source of intelligence in manufacturing. Modern organization have since then deployed and continuously improved strategies, methods and tools to feed the individual needs of their business domains, multidisciplinary teams, and supply chain, mastering the growing complexity of virtual product development. As far as product data are concerned, data exchange, 3D visualization, and communication are crucial processes for reusing manufacturing intelligence across lifecycle stages. Research and industry have developed several CAD interoperability, and visualization formats to uphold these product development strategies. Most of them, however, have not yet provided sufficient integration capabilities required for current digital transformation needs, mainly due to their lack of versatility in the multi-domains of the product lifecycle and primary focus on individual product descriptions. This paper analyses the methods and tools used in virtual product development to leverage 3D CAD data in the entire life cycle based on industrial standards. It presents a set of versatile concepts for mastering exchange, aware and unaware visualization and collaboration from single technical packages fit purposely for various domains and disciplines. It introduces a 3D master document utilizing PDF techniques, which fulfills requirements for electronic discovery and enables multi-domain collaboration and long-term data retention for the digital enterprise. Highlights With their practical introduction by the 1970s, virtual product data have emerged to a primary technical source of intelligence in manufacturing. Modern organization have since then deployed and continuously improved strategies, methods and tools to feed the individual needs of their business domains, multidisciplinary teams, and supply chain, mastering the growing complexity of virtual product development. As far as product data are concerned, data exchange, 3D visualization, and communication are crucial processes for reusing manufacturing intelligence across lifecycle stages. Research and industry have developed several CAD interoperability, and visualization formats to uphold these product development strategies. Most of them, however, have not yet provided sufficient integration capabilities required for current digital transformation needs, mainly due to their lack of versatility in the multi-domains of the product lifecycle and primary focus on individual product descriptions. This paper analyses the methods and tools used in virtual product development to leverage 3D CAD data in the entire life cycle. It presents a set of versatile concepts for mastering exchange, aware and unaware visualization and collaboration from single technical packages fit purposely for various domains and disciplines. It introduces a 3D master document utilizing PDF techniques, which fulfills requirements for electronic discovery and enables multi-domain collaboration and long-term data retention for the digital enterprise. 3D interoperability makes an important contribution to engineering collaboration. Several formats made to that end successively deal with challenges of their time. Some of these such as STEP are highly verbose formats, which gradually encapsulate all information necessary to define a product, its manufacture, and lifecycle support. Others are focusing best on lightweight visualization use cases and endure better with increasing size and complexity of data. Traditional formats like STEP and JT, though, are not capable of supporting the publishing activity in even broader fashion. New tendencies therefore are aiming at strengthening these individual formats through combination with complementary standards or by using document-based approaches. Unlike STEP or JT, 3D PDF can serve multiple purposes and leverages 3D data downstream throughout the product lifecycle to create, distribute and manage ubiquitous, highly consumable, role-specific rich renditions. Based on its container structure, 3D PDF is a fundamentally different approach from traditional experience established in product development – it is an exceptionally proficient contextual aggregation of multi-domain and multi-disciplinary product data. The manufacturing community should embrace it as an addition and great improvement to current engineering collaboration standards. All engineering components required for its descriptions are meanwhile published international standards. The productive use of 3D PDF for sure requires a change in the current mode of operation, be it simply because the traditional CAD model promptly demands new technical descriptions. More perspectives, which have not been primary focus of this approach need to be addressed in order to implement the 3D digital master concept of this paper in the industry. For the complete process to work properly, the actual workflows of today's business organizations must succeed a readiness check involving enhanced technical documentation capabilities of the authoring (CAx) applications based on 3D, PLM, and manufacturing workflows as well as new ways for engineering data communication with supply chain partners in the digital enterprise.


Author(s):  
Lina J. Lundquist ◽  
Franz Eberle ◽  
Mikael B. Mohlin ◽  
Rainer Sponsel

In a world of constant development and where competition grows stronger for every minute, there is a need to work smart to stay on the market. Product development in the automotive business is not an exception. It is though not enough to adapt new technology and new ideas, one has to apply it to the organization in the smartest way to be able to achieve one of the most wanted goals; shortened lead-time in combination with improved product quality. As well known, virtual prototyping is a mean to achieve the above stated goal. This paper describes how this method has been the basis for a new product development approach in the clutch system area in an automotive company. The new virtual development approach is enabled by creation of the Virtual Clutch Development Model (VCDM). The main benefit of the simulation model is that several clutch performance phenomena can easily be investigated at once to get an overview of the performance of the clutch system, this in an early phase of the development process. This will facilitate trade off decisions and avoid suboptimization and thus shorten lead-times and improve product quality.


Sign in / Sign up

Export Citation Format

Share Document