An Improved Genetic Algorithm for Fast Configuration Design of Large-scale Container Cranes

2015 ◽  
Vol 12 (11) ◽  
pp. 4319-4330
Author(s):  
Yongsheng Yang
2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Chao Wang ◽  
Guangyuan Fu ◽  
Daqiao Zhang ◽  
Hongqiao Wang ◽  
Jiufen Zhao

Key ground targets and ground target attacking weapon types are complex and diverse; thus, the weapon-target allocation (WTA) problem has long been a great challenge but has not yet been adequately addressed. A timely and reasonable WTA scheme not only helps to seize a fleeting combat opportunity but also optimizes the use of weaponry resources to achieve maximum battlefield benefits at the lowest cost. In this study, we constructed a ground target attacking WTA (GTA-WTA) model and designed a genetic algorithm-based variable value control method to address the issue that some intelligent algorithms are too slow in resolving the problem of GTA-WTA due to the large scale of the problem or are unable to obtain a feasible solution. The proposed method narrows the search space and improves the search efficiency by constraining and controlling the variable value range of the individuals in the initial population and ensures the quality of the solution by improving the mutation strategy to expand the range of variables. The simulation results show that the improved genetic algorithm (GA) can effectively solve the large-scale GTA-WTA problem with good performance.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Ting-Hua Yi ◽  
Hong-Nan Li ◽  
Ming Gu

Optimal sensor placement (OSP) technique plays a key role in the structural health monitoring (SHM) of large-scale structures. Based on the criterion of the OSP for the modal test, an improved genetic algorithm, called “generalized genetic algorithm (GGA)”, is adopted to find the optimal placement of sensors. The dual-structure coding method instead of binary coding method is proposed to code the solution. Accordingly, the dual-structure coding-based selection scheme, crossover strategy and mutation mechanism are given in detail. The tallest building in the north of China is implemented to demonstrate the feasibility and effectiveness of the GGA. The sensor placements obtained by the GGA are compared with those by exiting genetic algorithm, which shows that the GGA can improve the convergence of the algorithm and get the better placement scheme.


2021 ◽  
Vol 12 (1) ◽  
pp. 407
Author(s):  
Tianshan Dong ◽  
Shenyan Chen ◽  
Hai Huang ◽  
Chao Han ◽  
Ziqi Dai ◽  
...  

Truss size and topology optimization problems have recently been solved mainly by many different metaheuristic methods, and these methods usually require a large number of structural analyses due to their mechanism of population evolution. A branched multipoint approximation technique has been introduced to decrease the number of structural analyses by establishing approximate functions instead of the structural analyses in Genetic Algorithm (GA) when GA addresses continuous size variables and discrete topology variables. For large-scale trusses with a large number of design variables, an enormous change in topology variables in the GA causes a loss of approximation accuracy and then makes optimization convergence difficult. In this paper, a technique named the label–clip–splice method is proposed to improve the above hybrid method in regard to the above problem. It reduces the current search domain of GA gradually by clipping and splicing the labeled variables from chromosomes and optimizes the mixed-variables model efficiently with an approximation technique for large-scale trusses. Structural analysis of the proposed method is extremely reduced compared with these single metaheuristic methods. Numerical examples are presented to verify the efficacy and advantages of the proposed technique.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Changxi Ma ◽  
Cunrui Ma ◽  
Qing Ye ◽  
Ruichun He ◽  
Jieyan Song

For the layout problem of rural highway network, which is often characterized by a cluster of geographically dispersed nodes, neither the Prim algorithm nor the Kruskal algorithm can be readily applied, because the calculating speed and accuracy are by no means satisfactory. Rather than these two polynomial algorithms and the traditional genetic algorithm, this paper proposes an improved genetic algorithm. It encodes the minimum spanning trees of large-scale rural highway network layout with Prufer array, a method which can reduce the length of chromosome; it decodes Prufer array by using an efficient algorithm with time complexityo(n)and adopting the single transposition method and orthoposition exchange method, substitutes for traditional crossover and mutation operations, which can effectively overcome the prematurity of genetic algorithm. Computer simulation tests and case study confirm that the improved genetic algorithm is better than the traditional one.


2022 ◽  
Vol 14 (1) ◽  
pp. 491
Author(s):  
Chunxiao Zhao ◽  
Junhua Chen ◽  
Xingchen Zhang ◽  
Zanyang Cui

This paper presents a novel mathematical formulation in crew scheduling, considering real challenges most railway companies face such as roundtrip policy for crew members joining from different crew depots and stricter working time standards under a sustainable development strategy. In China, the crew scheduling is manually compiled by railway companies respectively, and the plan quality varies from person to person. An improved genetic algorithm is proposed to solve this large-scale combinatorial optimization problem. It repairs the infeasible gene fragments to optimize the search scope of the solution space and enhance the efficiency of GA. To investigate the algorithm’s efficiency, a real case study was employed. Results show that the proposed model and algorithm lead to considerable improvement compared to the original planning: (i) Compared with the classical metaheuristic algorithms (GA, PSO, TS), the improved genetic algorithm can reduce the objective value by 4.47%; and (ii) the optimized crew scheduling plan reduces three crew units and increases the average utilization of crew unit working time by 6.20% compared with the original plan.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Zhiqiang Fan ◽  
Shanshan Li ◽  
Zhijun Gao

Recently, incorporating carbon emissions into order allocation decisions has attracted considerable attention among scholars and industrialists. Moreover, affected by the random fluctuations of the man, machine, material, method, and environment (4M1E), the production process is usually imperfect with defective products. Reducing product defective rates can effectively improve the quality of the order allocation process. Therefore, considering product defective rate and carbon emission, a multiobjective integer nonlinear programming (INLP) formulation is presented to address this multiproduct, multiperiod, and multi-OEM order allocation problem. Furthermore, exploring the existing literatures, an improved genetic algorithm using priority encoding (IGAUPE) is put forward as a novel optimization technique. Finally, numerical experiments are conducted to validate the correctness of the proposed INLP model as well as the effectiveness of the proposed algorithm. Compared with the genetic algorithm using binary encoding (GAUBE), genetic algorithm using two-layer encoding (GAUTE), and LINGO software, the experiment results show that IGAUPE can improve the efficiency and effectiveness within the predetermined time limit when solving large-scale instances.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 297 ◽  
Author(s):  
Ke Shen ◽  
Toon Pessemier ◽  
Xu Gong ◽  
Luc Martens ◽  
Wout Joseph

Energy and failure are separately managed in scheduling problems despite the commonalities between these optimization problems. In this paper, an energy- and failure-aware continuous production scheduling problem (EFACPS) at the unit process level is investigated, starting from the construction of a centralized combinatorial optimization model combining energy saving and failure reduction. Traditional deterministic scheduling methods are difficult to rapidly acquire an optimal or near-optimal schedule in the face of frequent machine failures. An improved genetic algorithm (IGA) using a customized microbial genetic evolution strategy is proposed to solve the EFACPS problem. The IGA is integrated with three features: Memory search, problem-based randomization, and result evaluation. Based on real production cases from Soubry N.V., a large pasta manufacturer in Belgium, Monte Carlo simulations (MCS) are carried out to compare the performance of IGA with a conventional genetic algorithm (CGA) and a baseline random choice algorithm (RCA). Simulation results demonstrate a good performance of IGA and the feasibility to apply it to EFACPS problems. Large-scale experiments are further conducted to validate the effectiveness of IGA.


Author(s):  
Jianfeng Xie ◽  
Qiming Yang ◽  
Shuling Dai ◽  
Wanyang Wang ◽  
Jiandong Zhang

With the continuous development of UAV technology, the trend of using UAV in the military battlefield is increasingly obvious, but the autonomous air combat capability of UAV needs to be further improved. The air combat maneuvering decision is the key link to realize the UAV autonomous air combat, and the genetic algorithm has good robustness and global searching ability which is suitable for solving large-scale optimization problems. This paper uses an improved genetic algorithm to model UAV air combat maneuvering decisions. Based on engineering application requirements, a typical simulation test scenario is established. The simulation results show that the air combat maneuvering decision model based on reinforcement genetic algorithm in this paper can obtain the correct maneuvering decision sequence and gain a position advantage in combat.


Sign in / Sign up

Export Citation Format

Share Document