ALGORITHMS OF STRUCTURAL AND PARAMETRICAL TUNING OF ADAPTIVE OBSERVERS

2020 ◽  
Vol 13 (2) ◽  
pp. 39-47
Author(s):  
Konstantin Mukhanov

This paper deals with the identification of nonlinear systems of adaptive observers (AO). The process of building an AH consists of two stages – structural and parametric. At the structural stage, the class of nonlinearity and its structural parameters are estimated. In the process of parametric identification, the adjustment of the obtained parameters of the nonlinear system takes place. Considered two cases of application of structural information. The main focus is on the case of insufficient structural information. Adaptive algorithms for setting the parameters of AO are proposed. A procedure for estimating uncertainty is proposed.

1988 ◽  
Vol 55 (3) ◽  
pp. 702-705 ◽  
Author(s):  
Y. K. Lin ◽  
Guoqiang Cai

A systematic procedure is developed to obtain the stationary probability density for the response of a nonlinear system under parametric and external excitations of Gaussian white noises. The procedure is devised by separating the circulatory portion of the probability flow from the noncirculatory flow, thus obtaining two sets of equations that must be satisfied by the probability potential. It is shown that these equations are identical to two of the conditions established previously under the assumption of detailed balance; therefore, one remaining condition for detailed balance is superfluous. Three examples are given for illustration, one of which is capable of exhibiting limit cycle and bifurcation behaviors, while another is selected to show that two different systems under two differents sets of excitations may result in the same probability distribution for their responses.


2012 ◽  
Vol 2012 ◽  
pp. 1-22
Author(s):  
Qinming Liu ◽  
Ming Dong

Health management for a complex nonlinear system is becoming more important for condition-based maintenance and minimizing the related risks and costs over its entire life. However, a complex nonlinear system often operates under dynamically operational and environmental conditions, and it subjects to high levels of uncertainty and unpredictability so that effective methods for online health management are still few now. This paper combines hidden semi-Markov model (HSMM) with sequential Monte Carlo (SMC) methods. HSMM is used to obtain the transition probabilities among health states and health state durations of a complex nonlinear system, while the SMC method is adopted to decrease the computational and space complexity, and describe the probability relationships between multiple health states and monitored observations of a complex nonlinear system. This paper proposes a novel method of multisteps ahead health recognition based on joint probability distribution for health management of a complex nonlinear system. Moreover, a new online health prognostic method is developed. A real case study is used to demonstrate the implementation and potential applications of the proposed methods for online health management of complex nonlinear systems.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 854
Author(s):  
Raquel S. Rodríguez ◽  
Gilberto Gonzalez Avalos ◽  
Noe Barrera Gallegos ◽  
Gerardo Ayala-Jaimes ◽  
Aaron Padilla Garcia

An alternative method to analyze a class of nonlinear systems in a bond graph approach is proposed. It is well known that the analysis and synthesis of nonlinear systems is not a simple task. Hence, a first step can be to linearize this nonlinear system on an operation point. A methodology to obtain linearization for consecutive points along a trajectory in the physical domain is proposed. This type of linearization determines a group of linearized systems, which is an approximation close enough to original nonlinear dynamic and in this paper is called dynamic linearization. Dynamic linearization through a lemma and a procedure is established. Therefore, linearized bond graph models can be considered symmetric with respect to nonlinear system models. The proposed methodology is applied to a DC motor as a case study. In order to show the effectiveness of the dynamic linearization, simulation results are shown.


Textiles ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 322-336
Author(s):  
Julia Orlik ◽  
Maxime Krier ◽  
David Neusius ◽  
Kathrin Pietsch ◽  
Olena Sivak ◽  
...  

In many textiles and fiber structures, the behavior of the material is determined by the structural arrangements of the fibers, their thickness and cross-section, as well as their material properties. Textiles are thin plates made of thin long yarns in frictional contact with each other that are connected via a rule defined by a looping diagram. The yarns themselves are stretchable or non-stretchable. All these structural parameters of a textile define its macroscopic behavior. Its folding is determined by all these parameters and the kind of the boundary fixation or loading direction. The next influencing characteristic is the value of the loading. The same textile can behave similar to a shell and work just for bending, or behave as a membrane with large tension deformations under different magnitudes of the loading forces. In our research, bounds on the loading and frictional parameters for both types of behavior are found. Additionally, algorithms for the computation of effective textile properties based on the structural information are proposed. Further focus of our research is the nature of folding, induced by pre-strain in yarns and some in-plane restriction of the textile movements, or by the local knitting or weaving pattern and the yarn’s cross-sections. Further investigations concern different applications with spacer fabrics. Structural parameters influencing the macroscopic fabric behavior are investigated and a way for optimization is proposed. An overview of our published mathematical and numerical papers with developed algorithms is given and our numerical tools based on these theoretical results are demonstrated.


2009 ◽  
Vol 62 (9) ◽  
pp. 1054 ◽  
Author(s):  
Defang Ouyang ◽  
Hong Zhang ◽  
Dirk-Peter Herten ◽  
Harendra S. Parekh ◽  
Sean C. Smith

We use molecular dynamics simulations to compare the conformational structure and dynamics of a 21-base pair RNA sequence initially constructed according to the canonical A-RNA and A′-RNA forms in the presence of counterions and explicit water. Our study aims to add a dynamical perspective to the solid-state structural information that has been derived from X-ray data for these two characteristic forms of RNA. Analysis of the three main structural descriptors commonly used to differentiate between the two forms of RNA – namely major groove width, inclination and the number of base pairs in a helical twist – over a 30 ns simulation period reveals a flexible structure in aqueous solution with fluctuations in the values of these structural parameters encompassing the range between the two crystal forms and more. This provides evidence to suggest that the identification of distinct A-RNA and A′-RNA structures, while relevant in the crystalline form, may not be generally relevant in the context of RNA in the aqueous phase. The apparent structural flexibility observed in our simulations is likely to bear ramifications for the interactions of RNA with biological molecules (e.g. proteins) and non-biological molecules (e.g. non-viral gene delivery vectors).


2003 ◽  
Vol 125 (2) ◽  
pp. 170-177 ◽  
Author(s):  
Lili Wang ◽  
Jinghui Zhang ◽  
Chao Wang ◽  
Shiyue Hu

The joint time-frequency analysis method is adopted to study the nonlinear behavior varying with the instantaneous response for a class of S.D.O.F nonlinear system. A time-frequency masking operator, together with the conception of effective time-frequency region of the asymptotic signal are defined here. Based on these mathematical foundations, a so-called skeleton linear model (SLM) is constructed which has similar nonlinear characteristics with the nonlinear system. Two skeleton curves are deduced which can indicate the stiffness and damping in the nonlinear system. The relationship between the SLM and the nonlinear system, both parameters and solutions, is clarified. Based on this work a new identification technique of nonlinear systems using the nonstationary vibration data will be proposed through time-frequency filtering technique and wavelet transform in the following paper.


Author(s):  
Raheleh Jafari ◽  
Sina Razvarz ◽  
Alexander Gegov ◽  
Satyam Paul

In order to model the fuzzy nonlinear systems, fuzzy equations with Z-number coefficients are used in this chapter. The modeling of fuzzy nonlinear systems is to obtain the Z-number coefficients of fuzzy equations. In this work, the neural network approach is used for finding the coefficients of fuzzy equations. Some examples with applications in mechanics are given. The simulation results demonstrate that the proposed neural network is effective for obtaining the Z-number coefficients of fuzzy equations.


Sign in / Sign up

Export Citation Format

Share Document