weaving pattern
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 9)

H-INDEX

3
(FIVE YEARS 1)

Author(s):  
V.I. Korolkov ◽  
E.N. Nekravtsev ◽  
K.S. Safonov ◽  
P.S. Ogurtsov ◽  
V.A. Oganesov ◽  
...  

The article considers issues of identifying the causes and factors that have a significant impact on the occurring and development of the warping process in monolithic products made of polymer — composite materials (PCM) obtained by the method of multidirectional layering of uncured PCM — semi-finished product (prepreg) and subsequent high-temperature molding in an autoclave. Warping is understood as a defect of a PCM product in the form of distortion of its configuration (deformation) under stresses arising during the polymerization of the binder prepreg at a high temperature (1800C) and cooling the product to room temperature. Flat samples made of glass-based prepregs have been researched. The selecting schemes of equilibrium stacking of samples of monolithic panels has been carried out. The influence of the binder content in the prepreg on the deformations in non-equilibrium layouts of the panel samples has been evaluated. It is shown that the most significant factors influencing the occurrence of warpage of monolithic PCM panels are: the weaving pattern of the prepreg reinforcing base, the amount of binder deposited in the prepreg, the direction of stacking monolayers in the panel, the edge effect and the shape of the product surface. It was found that the warpage of the sample occurs along the direction of unbalanced shrinkage of the binder. For balanced stacking, compensation in the direction of binder shrinkage and symmetry with respect to the central layer are necessary; more binder in the prepreg reduces the amount of warpage, but only slightly. The development of constructive and technological recommendations based on the results obtained will lead to a reduction in the terms of development of PCM products.


Textiles ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 322-336
Author(s):  
Julia Orlik ◽  
Maxime Krier ◽  
David Neusius ◽  
Kathrin Pietsch ◽  
Olena Sivak ◽  
...  

In many textiles and fiber structures, the behavior of the material is determined by the structural arrangements of the fibers, their thickness and cross-section, as well as their material properties. Textiles are thin plates made of thin long yarns in frictional contact with each other that are connected via a rule defined by a looping diagram. The yarns themselves are stretchable or non-stretchable. All these structural parameters of a textile define its macroscopic behavior. Its folding is determined by all these parameters and the kind of the boundary fixation or loading direction. The next influencing characteristic is the value of the loading. The same textile can behave similar to a shell and work just for bending, or behave as a membrane with large tension deformations under different magnitudes of the loading forces. In our research, bounds on the loading and frictional parameters for both types of behavior are found. Additionally, algorithms for the computation of effective textile properties based on the structural information are proposed. Further focus of our research is the nature of folding, induced by pre-strain in yarns and some in-plane restriction of the textile movements, or by the local knitting or weaving pattern and the yarn’s cross-sections. Further investigations concern different applications with spacer fabrics. Structural parameters influencing the macroscopic fabric behavior are investigated and a way for optimization is proposed. An overview of our published mathematical and numerical papers with developed algorithms is given and our numerical tools based on these theoretical results are demonstrated.


2021 ◽  
Vol 28 (1) ◽  
pp. 153-159
Author(s):  
Muhammad Azhar Ali Khan

AbstractThe accurate characterization of fabrics used in vacuum assisted resin transfer molding (VARTM) is essential in order to model the flow through these porous preforms. A wide range of these fabrics are available for composite manufacturing through VARTM and thus brings about a need to opt a methodology which characterizes the in-plane permeability of these preforms. These permeability values can then be used in simulations that can track the flow front progression and mold filling time. This work identifies the permeability of an E-glass fabric based on Darcy's law. Woven fabric having areal weight of 200 grams per square meter (gsm) is under consideration. The experiments are conducted at constant pressure conditions using 2D Radial flow method. Stereo microscopy of the preform material is done for detailed study of the weaving pattern. It is concluded that plain woven fabric exhibits anisotropic behavior when tested for in-plane permeability. Permeability is found to be higher in a direction which offers more interspacing between adjacent fibers threads causing more resin to flow in this direction.


2020 ◽  
pp. 002199832098004
Author(s):  
M Hussain ◽  
A Imad ◽  
A Saouab ◽  
T Kanit ◽  
Y Nawab ◽  
...  

Fibre metal laminates (FML) are being used in automotive, aerospace and naval applications due to their light weight and superior performance. The FMLs are made by sandwiching composite with metal. The environmental concerns due to non-biodegradability of such structures, lead to the development of FML containing natural fibre composites. Natural fibres composite, despite having good damping properties have overall poor mechanical properties. However, this aspect can be improved by weaving the fibres in 3 D pattern. In literature, FML made using 3 D woven jute composites is never reported. Furthermore, no literature is found on adhesion of natural fibre composite-metal bonding. In this paper, development of novel 3 D Jute Reinforced natural fibre Aluminium Laminates (JuRALs) is reported. Furthermore, the effect of 3 D weaving pattern and metal-composite bonding on mechanical properties and failure mechanism of the developed samples is also discussed in detail. The four-layered 3 D woven Jute fabric reinforcement was made using four interlocking patterns. The composites and JuRALs were fabricated using epoxy resin by vacuum infusion technique. The surface of aluminium was treated using phosphoric acid anodizing. Tensile, flexural and T-peel tests were performed according to ASTM testing method using Z100 All-round, Zwick Roell. The results showed that out of four types of used reinforcements, the through-thickness composites had better tensile properties while layer-to-layer composite had better flexural properties. The tensile and flexural properties of JuRALs made with through-thickness interlock reinforcement were better as compared to layer-to-layer interlock reinforcement. The T-peel results depicted that the constituent materials influenced the metal-composite adhesion properties, rather the type of 3 D structure.


2019 ◽  
Vol 26 (116) ◽  
pp. 320-323
Author(s):  
Hajar JAOUANI ◽  
Dimitroula MATSOUKA ◽  
Savvas VASSILIADIS ◽  
Konstantinos Stefanos NIKAS

2019 ◽  
Vol 8 (1) ◽  
pp. 168-174 ◽  
Author(s):  
Qingli Zheng ◽  
Pengfei Dong ◽  
Zhiqiang Li ◽  
Xinwei Han ◽  
Changchun Zhou ◽  
...  

Abstract The novel braided composite stent (BCS), woven with both nitinol wires and polyethylene terephthalate (PET) strips, were characterized and compared with the braided nitinol stent in the same weaving pattern. Finite element models simulating the stent compression and bending were developed to quantify its radial strength and longitudinal flexibility. The interaction between the nitinol wires and the PET strips were also delineated. Results showed that the PET strips enforced more constrains on the BCS and thus enhance its radial strength especially at a larger compression load. The longitudinal flexibility of the BCS was less sensitive to the presence of the PET strips. This work suggested that the novel design of the BCS could acquire the advantage of a covered stent without compromising its mechanical performance. The fundamental understanding of the braided composite stent will facilitate a better device design.


2019 ◽  
Vol 14 ◽  
pp. 155892501983302 ◽  
Author(s):  
Mathieu Decrette ◽  
Jean-François Osselin ◽  
Jean-Yves Drean

Materials used for composite reinforcements usually have high mechanical performances which are linked to a very sensitive and brittle behaviour to friction. The weaving process applied to delicate yarns, like glass, carbon and some other technical yarns, generate damages which tend to reduce the performances of the final composite. Shedding may be a major weaving stage for the generation of yarn damages. Based on a specific weaving pattern, it was observed that different shedding configurations could influence yarn damages at the shedding step. The specificity of the motorized Jacquard device is used to generate different movements and geometry configurations. A particular methodology needed to be set in order to confirm these observations and bring out a clear effect of shedding parameters on yarn damages. After damages have been identified and classified, some experiments will count the damage occurrences and evolutions in time according to shedding parameters. The aim of this research is first to show a clear effect of shedding on warp damaging thanks to the quantification of damages and then to set out an optimized configuration of shedding parameters which may reduce deterioration involved in high-density multilayer woven fabrics.


2018 ◽  
Vol 145 ◽  
pp. 120-127 ◽  
Author(s):  
A.P. Beliaev ◽  
T.A. Beliakova ◽  
P.V. Chistyakov ◽  
A.V. Iniukhin ◽  
L.A. Kostyreva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document