Evaluation of Glass Geometry on Deformation Behavior Particulate-Filled Composite Materials Using X-ray Computed Tomography

Author(s):  
KENAN CINAR ◽  
IBRAHIM GUVEN
2018 ◽  
Vol 52 (21) ◽  
pp. 2899-2917 ◽  
Author(s):  
DM Grogan ◽  
M Flanagan ◽  
M Walls ◽  
SB Leen ◽  
A Doyle ◽  
...  

The lifespan and economic viability of tidal energy devices are constrained, in part, by the complex degradation of the tidal turbine blade materials due to prolonged immersion in a hostile sub-sea environment. Seawater penetration is a significant degradation mechanism in composite materials. This work aims to investigate the influence of microstructure and hydrostatic pressure on water absorption in four polymer composites which are candidate materials for use in tidal energy devices. These materials are: a glass fibre powder epoxy, a carbon fibre powder epoxy, glass fibre Ampreg epoxy and a chopped fibre glass fibre Polyether Ether Ketone. X-ray computed tomography is used to characterise the voids, resin-rich areas and other manufacturing defects present in each material. These defects are known to significantly alter the rate of moisture diffusion, as well as the total uptake of water at saturation. The samples are then exposed to accelerated water aging and hydrostatic pressurisation in order to simulate a range of expected sub-sea operating conditions. The material micro-structure, the matrix material and pressurisation level are shown to strongly influence both the moisture absorption rate and total water uptake. Significant volumetric changes are also noted for all samples, both during and after aging. X-ray computed tomography scans of specimens also provide a unique insight into the role of voids in storing water once a material has reached saturation.


2012 ◽  
Vol 556 ◽  
pp. 678-684 ◽  
Author(s):  
Yoshihiko Hangai ◽  
Kazuya Takahashi ◽  
Ryo Yamaguchi ◽  
Takao Utsunomiya ◽  
Soichiro Kitahara ◽  
...  

Author(s):  
Anastasia Sharanova ◽  
Maria Dmitrieva ◽  
Vladimir Leitsin ◽  
Maria Shinyaeva

Author(s):  
Kenan Cinar ◽  
Ibrahim Guven

Micro-computed tomography (CT) was used as a tool to investigate the deformation behavior of particulate-filled composite materials. Three different shapes of glass fillers (spherical, flake, and fiber) and filler mass fractions (5%, 10%, and 15%) were introduced to the epoxy resin. Rockwell hardness H scale indentation test was used to deform the composite material. The composite materials were scanned before and after the indentation test by using micro-CT. Displacement field for each filler type and mass fraction were measured through correlation of before and after scan data. The effects of filler type and mass fraction on the internal displacement field were investigated. It was also demonstrated that micro-CT can be used as a tool to create realistic representative volume elements (RVEs) for particulate-filled composite materials instead of randomly distributed particles within the matrix material.


1999 ◽  
Vol 11 (1) ◽  
pp. 199-211
Author(s):  
J. M. Winter ◽  
R. E. Green ◽  
A. M. Waters ◽  
W. H. Green

Sign in / Sign up

Export Citation Format

Share Document