vELECTROPLATING POLYMER BASED ADDITIVE MANUFACTURED PARTS FOR ENHANCED STRUCTURAL PERFORMANCE

2021 ◽  
Author(s):  
WARUNA SENEVIRATNE, ◽  
JOHN TOMBLIN ◽  
BRANDON SAATHOFF

Additive manufacturing has been adopted in many aerospace and defense applications to reduce weight and buy-to-fly ratios of low-volume high- complexity parts. Polymer-based additive manufacturing processes such as Fused Deposition Modeling (FDM) has enabled aerospace manufactures to improve the structural efficiency of parts through generative design or topology optimization. This level of design freedom did not exist in the past due to limitations associated with traditional manufacturing processes such as subtractive machining. Improvements in the material and the maturation of the FDM process has led to the production of many non-structural flightworthy parts used in aircraft today. Polymer-based additive manufacturing can be further leveraged in aerospace applications with the addition of electroplated coatings that act as reinforcement. While many of the commonly known electroplated coating applications involve enhancing the part appearance, electroplated coatings can also improve the strength, stiffness, and durability of plastic parts. Depending on the use case, the thickness of the metallic plating material (combination of copper and nickel) can be tailored to achieve the desired composite properties (metal and polymer). In this research, the tensile and flexural mechanical properties were assessed for Ultem™ 9085 FDM printed specimens and compared to specimens with metallic coating thicknesses of approximately 75-μm, 150-μm, and 300-μm. Non- destructive inspections using x-ray computed tomography were performed prior to mechanical testing to assess the electroplated coating thickness variation and overall quality.

2011 ◽  
Vol 199-200 ◽  
pp. 1984-1987 ◽  
Author(s):  
Olaf Diegel ◽  
Sarat Singamneni ◽  
Ben Huang ◽  
Ian Gibson

This paper describes a curved-layer additive manufacturing technology that has the potential to print plastic components with integral conductive polymer electronic circuits. Researchers at AUT University in New Zealand and the National University of Singapore have developed a novel Fused Deposition Modeling (FDM) process in which the layers of material that make up the part are deposited as curved layers instead of the conventional flat layers. This technology opens up possibilities of building curved plastic parts that have conductive electronic tracks and components printed as an integral part of the plastic component, thereby eliminating printed circuit boards and wiring. It is not possible to do this with existing flat-layer additive manufacturing technologies as the continuity of a circuit could be interrupted between the layers. With curved-layer fused deposition modeling (CLFDM) this problem is removed as continuous filaments in 3 dimensions can be produced, allowing for continuous conductive circuits.


2011 ◽  
Vol 467-469 ◽  
pp. 662-667 ◽  
Author(s):  
Olaf Diegel ◽  
Sarat Singamneni ◽  
Ben Huang ◽  
Ian Gibson

This paper describes an additive manufacturing technology that has the potential to print plastic components with integral conductive polymer electronic circuits. This could have a major impact in the fields of robotics and mechatronics as it has the potential to allow large wiring looms, often an issue with complex robotic systems, to be printed as an integral part of the products plastic shell. This paper describes the development of a novel Fused Deposition Modeling (FDM) process in which the layers of material that make up the part are deposited as curved layers instead of the conventional flat layers. This opens up possibilities of building curved plastic parts that have conductive electronic tracks and components printed as an integral part of the plastic component, thereby eliminating printed circuit boards and wiring. It is not possible to do this with existing flatlayer additive manufacturing technologies as the continuity of a circuit could be interrupted between the layers. With curved-layer fused deposition modeling (CLFDM) this problem is removed as continuous filaments in 3 dimensions can be produced, allowing for continuous conductive circuits.


Author(s):  
Ismayuzri B. Ishak ◽  
Mark B. Moffett ◽  
Pierre Larochelle

Manufacturing processes for the fabrication of complex geometries involve multi-step processes when using conventional machining techniques with material removal processes. Additive manufacturing processes give leverage for fabricating complex geometric structures compared to conventional machining. The capability to fabricate 3D lattice structures is a key additive manufacturing characteristic. Most conventional additive manufacturing processes involve layer based curing or deposition to produce a three-dimensional model. In this paper, a three-dimensional lattice structure generator for multi-plane fused deposition modeling printing was explored. A toolpath for an input geometric model with an overhang structure was able to be generated. The input geometric model was able to be printed using a six degree of freedom robot arm platform. Experimental results show the achievable capabilities of the 3D lattice structure generator for use with the multi-plane platform.


2018 ◽  
Vol 24 (2) ◽  
pp. 395-408 ◽  
Author(s):  
Azadeh Haghighi ◽  
Lin Li

Purpose Quantifying and controlling the quality characteristics of parts produced by additive manufacturing (AM) processes has attracted significant interest in the research community. However, to increase the sustainability of AM processes, such quality characteristics need to be assessed together with life cycle performance of AM processes such as energy and material consumption and manufacturing cost. Although a few studies have been performed for several quality characteristics, i.e. surface roughness and tensile strength, the relationship between dimensional performance and manufacturing cost is still not well known for AM processes. Design/methodology/approach In this paper, a comprehensive study of the dimensional performance and manufacturing cost of fused deposition modeling AM process is performed. Design of experiment technique is used, and the correlation of different cost components and the dimensional accuracy of parts are statistically studied. Findings The optimum process parameters for simultaneously optimizing the dimensional performance and manufacturing cost are identified. The analysis shows that as opposed to traditional manufacturing processes, obtaining a better dimensional performance is not necessarily associated with higher cost in the AM processes. Originality/value Almost no study and analysis for the combined dimensional performance and manufacturing cost has been performed for AM processes in the literature. It is known that within the context of traditional manufacturing processes, a natural trade-off governs the pursuit of higher dimensional performance and the manufacturing cost. However, as the AM process has a different nature compared with traditional manufacturing processes, the relationship between manufacturing cost and dimensional performance of parts has to be studied. Understanding this relationship will also help to establish a cost-optimal and sustainable tolerance allocation strategy in assemblies with AM components.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Zahra Faraji Rad ◽  
Philip D. Prewett ◽  
Graham J. Davies

AbstractMicroneedle patches have received much interest in the last two decades as drug/vaccine delivery or fluid sampling systems for diagnostic and monitoring purposes. Microneedles are manufactured using a variety of additive and subtractive micromanufacturing techniques. In the last decade, much attention has been paid to using additive manufacturing techniques in both research and industry, such as 3D printing, fused deposition modeling, inkjet printing, and two-photon polymerization (2PP), with 2PP being the most flexible method for the fabrication of microneedle arrays. 2PP is one of the most versatile and precise additive manufacturing processes, which enables the fabrication of arbitrary three-dimensional (3D) prototypes directly from computer-aided-design (CAD) models with a resolution down to 100 nm. Due to its unprecedented flexibility and high spatial resolution, the use of this technology has been widespread for the fabrication of bio-microdevices and bio-nanodevices such as microneedles and microfluidic devices. This is a pioneering transformative technology that facilitates the fabrication of complex miniaturized structures that cannot be fabricated with established multistep manufacturing methods such as injection molding, photolithography, and etching. Thus, microstructures are designed according to structural and fluid dynamics considerations rather than the manufacturing constraints imposed by methods such as machining or etching processes. This article presents the fundamentals of 2PP and the recent development of microneedle array fabrication through 2PP as a precise and unique method for the manufacture of microstructures, which may overcome the shortcomings of conventional manufacturing processes.


Author(s):  
Arash Alex Mazhari ◽  
Randall Ticknor ◽  
Sean Swei ◽  
Stanley Krzesniak ◽  
Mircea Teodorescu

AbstractThe sensitivity of additive manufacturing (AM) to the variability of feedstock quality, machine calibration, and accuracy drives the need for frequent characterization of fabricated objects for a robust material process. The constant testing is fiscally and logistically intensive, often requiring coupons that are manufactured and tested in independent facilities. As a step toward integrating testing and characterization into the AM process while reducing cost, we propose the automated testing and characterization of AM (ATCAM). ATCAM is configured for fused deposition modeling (FDM) and introduces the concept of dynamic coupons to generate large quantities of basic AM samples. An in situ actuator is printed on the build surface to deploy coupons through impact, which is sensed by a load cell system utilizing machine learning (ML) to correlate AM data. We test ATCAM’s ability to distinguish the quality of three PLA feedstock at differing price points by generating and comparing 3000 dynamic coupons in 10 repetitions of 100 coupon cycles per material. ATCAM correlated the quality of each feedstock and visualized fatigue of in situ actuators over each testing cycle. Three ML algorithms were then compared, with Gradient Boost regression demonstrating a 71% correlation of dynamic coupons to their parent feedstock and provided confidence for the quality of AM data ATCAM generates.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wiktoria Maria Wojnarowska ◽  
Jakub Najowicz ◽  
Tomasz Piecuch ◽  
Michał Sochacki ◽  
Dawid Pijanka ◽  
...  

Purpose Chicken orthoses that cover the ankle joint area are not commercially available. Therefore, the main purpose of this study is to fabricate a customised temporary Ankle–Foot Orthosis (AFO) for a chicken with a twisted ankle using computer-aided design (CAD) and three-dimensional (3D) printing. The secondary objective of the paper is to present the specific application of Additive Manufacturing (AM) in veterinary medicine. Design/methodology/approach The design process was based on multiple sketches, photos and measurements that were provided by the owner of the animal. The 3D model of the orthosis was made with Autodesk Fusion 360, while the prototype was fabricated using fused deposition modelling (FDM). Evaluation of the AFO was performed using the finite element method. Findings The work resulted in a functional 3D printed AFO for chicken. It was found that the orthosis made with AM provides satisfactory stiffen and a good fit. It was concluded that AM is suitable for custom bird AFO fabrication and, in some respects, is superior to traditional manufacturing methods. It was also concluded that the presented procedure can be applied in other veterinary cases and to other animal species and other parts of their body. AM provides veterinary with a powerful tool for the production of well-fitted and durable orthoses for animals. Research limitations/implications The study does not include the chicken's opinion on the comfort or fit of the manufactured AFO due to communication issues. Evaluation of the final prototype was done by the researchers and the animal owner. Originality/value No evidence was found in the literature on the use of AM for chicken orthosis, so this study is the first to describe such an application of AM. In addition, the study demonstrates the value of AM in veterinary medicine, especially in the production of devices such as orthoses.


Author(s):  
Alfonso Costas ◽  
Daniel E. Davis ◽  
Yixian Niu ◽  
Sadegh Dabiri ◽  
Jose Garcia ◽  
...  

Additive manufacturing has emerged as an alternative to traditional manufacturing technologies. In particular, industries like fluid power, aviation and robotics have the potential to benefit greatly from this technology, due to the design flexibility, weight reduction and compact size that can be achieved. In this work, the design process and advantages of using 3D printing to make soft linear actuators were studied and highlighted. This work explored the limitations of current additive manufacturing tolerances to fabricate a typical piston-cylinder assembly, and how enclosed bellow actuators could be used to overcome high leakage and friction issues experienced with a piston-cylinder type actuator. To do that, different 3D printing technologies were studied and evaluated (stereolithorgraphy and fused deposition modeling) in the pursuit of high-fidelity, cost-effective 3D printing. The initial attempt consisted of printing the soft actuators directly using flexible materials in a stereolithography-type 3D printer. However, these actuators showed low durability and poor performance. The lack of a reliable resin resulted in the replacement of this material by EcoFlex® 00-30 silicone and the use of a 3D printed mold to cast the actuators. These molds included a 3-D printed dissolvable core inside the cast actuator in order to finish the manufacturing process in one single step. An experimental setup to evaluate the capabilities of these actuators was developed. Results are shown to assess the steady-state and the dynamic characteristics of these actuators. These tests resulted into the stroke-pressure and stroke-time responses for a specific load given different proportional valve inputs.


Sign in / Sign up

Export Citation Format

Share Document