scholarly journals Crash Model Order Reduction for Efficient Topology Optimization Using the ESLs Method

Author(s):  
Chun REN ◽  
Hai-tao MIN ◽  
Tian-fei MA ◽  
Fang-quan WANG
2020 ◽  
Vol 371 ◽  
pp. 113306 ◽  
Author(s):  
Chuong Nguyen ◽  
Xiaoying Zhuang ◽  
Ludovic Chamoin ◽  
Xianzhong Zhao ◽  
H. Nguyen-Xuan ◽  
...  

Author(s):  
Chun Ren ◽  
Haitao Min ◽  
Tianfei Ma ◽  
Fangquan Wang

In this study, an efficient topology optimization method under crash loads is proposed by combining the equivalent static loads with a model order reduction method, which is referred as the reduced model–based equivalent static loads method for nonlinear dynamic response topology optimization method. Considering that some parts of the vehicle experience large nonlinear deformations, whereas others exhibit only small linear deformations in a vehicle crash scenario, the linear and nonlinear behavior parts are identified and the whole model of the complete structure is divided into nonlinear and linear sub-models. At each cycle, the model order reduction method is used in the linear sub-model during crash analysis to solve the low-density-elements-induced mesh distortion problem and accelerate this process. In the linear static topology optimization, the nonlinear sub-model that was initially used to describe the nonlinear behavior part is linearized by the equivalent static loads method and then reduced by the Guyan reduction method. Then, the reduced equivalent static load model is assembled into the linear sub-model that is defined as the design space to formulate a reduced topology optimization model of the complete structure and the reduced equivalent static loads that only act on master degrees of freedom are calculated. Finally, the linear static topology optimization is performed based on the reduced topology optimization model with the reduced equivalent static loads to enhance the efficiency and improve the numerical stability. The process is repeated until the convergence criterion is satisfied. The effectiveness of the proposed method is demonstrated by investing a numerical example. The results show that the proposed method provides a feasible strategy for the topology optimization under crash loads, which can effectively improve the numerical stability and convergence.


Author(s):  
Vladimir Lantsov ◽  
A. Papulina

The new algorithm of solving harmonic balance equations which used in electronic CAD systems is presented. The new algorithm is based on implementation to harmonic balance equations the ideas of model order reduction methods. This algorithm allows significantly reduce the size of memory for storing of model equations and reduce of computational costs.


Sign in / Sign up

Export Citation Format

Share Document