Efficient topology optimization of multicomponent structure using substructuring-based model order reduction method

2020 ◽  
Vol 228 ◽  
pp. 106146 ◽  
Author(s):  
Hyeong Seok Koh ◽  
Jun Hwan Kim ◽  
Gil Ho Yoon
Author(s):  
Chun Ren ◽  
Haitao Min ◽  
Tianfei Ma ◽  
Fangquan Wang

In this study, an efficient topology optimization method under crash loads is proposed by combining the equivalent static loads with a model order reduction method, which is referred as the reduced model–based equivalent static loads method for nonlinear dynamic response topology optimization method. Considering that some parts of the vehicle experience large nonlinear deformations, whereas others exhibit only small linear deformations in a vehicle crash scenario, the linear and nonlinear behavior parts are identified and the whole model of the complete structure is divided into nonlinear and linear sub-models. At each cycle, the model order reduction method is used in the linear sub-model during crash analysis to solve the low-density-elements-induced mesh distortion problem and accelerate this process. In the linear static topology optimization, the nonlinear sub-model that was initially used to describe the nonlinear behavior part is linearized by the equivalent static loads method and then reduced by the Guyan reduction method. Then, the reduced equivalent static load model is assembled into the linear sub-model that is defined as the design space to formulate a reduced topology optimization model of the complete structure and the reduced equivalent static loads that only act on master degrees of freedom are calculated. Finally, the linear static topology optimization is performed based on the reduced topology optimization model with the reduced equivalent static loads to enhance the efficiency and improve the numerical stability. The process is repeated until the convergence criterion is satisfied. The effectiveness of the proposed method is demonstrated by investing a numerical example. The results show that the proposed method provides a feasible strategy for the topology optimization under crash loads, which can effectively improve the numerical stability and convergence.


2017 ◽  
Vol 59 (1) ◽  
pp. 115-133
Author(s):  
K. MOHAMED ◽  
A. MEHDI ◽  
M. ABDELKADER

We present a new iterative model order reduction method for large-scale linear time-invariant dynamical systems, based on a combined singular value decomposition–adaptive-order rational Arnoldi (SVD-AORA) approach. This method is an extension of the SVD-rational Krylov method. It is based on two-sided projections: the SVD side depends on the observability Gramian by the resolution of the Lyapunov equation, and the Krylov side is generated by the adaptive-order rational Arnoldi based on moment matching. The use of the SVD provides stability for the reduced system, and the use of the AORA method provides numerical efficiency and a relative lower computation complexity. The reduced model obtained is asymptotically stable and minimizes the error ($H_{2}$and$H_{\infty }$) between the original and the reduced system. Two examples are given to study the performance of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document