scholarly journals Aircraft Detection in Remote Sensing Images via CNN Multi-scale Feature Representation

Author(s):  
Jia-qi WANG ◽  
Xin NIU ◽  
Peng ZHANG ◽  
Yong DOU ◽  
Fei XIA
2021 ◽  
Vol 13 (3) ◽  
pp. 433
Author(s):  
Junge Shen ◽  
Tong Zhang ◽  
Yichen Wang ◽  
Ruxin Wang ◽  
Qi Wang ◽  
...  

Remote sensing images contain complex backgrounds and multi-scale objects, which pose a challenging task for scene classification. The performance is highly dependent on the capacity of the scene representation as well as the discriminability of the classifier. Although multiple models possess better properties than a single model on these aspects, the fusion strategy for these models is a key component to maximize the final accuracy. In this paper, we construct a novel dual-model architecture with a grouping-attention-fusion strategy to improve the performance of scene classification. Specifically, the model employs two different convolutional neural networks (CNNs) for feature extraction, where the grouping-attention-fusion strategy is used to fuse the features of the CNNs in a fine and multi-scale manner. In this way, the resultant feature representation of the scene is enhanced. Moreover, to address the issue of similar appearances between different scenes, we develop a loss function which encourages small intra-class diversities and large inter-class distances. Extensive experiments are conducted on four scene classification datasets include the UCM land-use dataset, the WHU-RS19 dataset, the AID dataset, and the OPTIMAL-31 dataset. The experimental results demonstrate the superiority of the proposed method in comparison with the state-of-the-arts.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5270
Author(s):  
Yantian Wang ◽  
Haifeng Li ◽  
Peng Jia ◽  
Guo Zhang ◽  
Taoyang Wang ◽  
...  

Deep learning-based aircraft detection methods have been increasingly implemented in recent years. However, due to the multi-resolution imaging modes, aircrafts in different images show very wide diversity on size, view and other visual features, which brings great challenges to detection. Although standard deep convolution neural networks (DCNN) can extract rich semantic features, they destroy the bottom-level location information. The features of small targets may also be submerged by redundant top-level features, resulting in poor detection. To address these problems, we proposed a compact multi-scale dense convolutional neural network (MS-DenseNet) for aircraft detection in remote sensing images. Herein, DenseNet was utilized for feature extraction, which enhances the propagation and reuse of the bottom-level high-resolution features. Subsequently, we combined feature pyramid network (FPN) with DenseNet to form a MS-DenseNet for learning multi-scale features, especially features of small objects. Finally, by compressing some of the unnecessary convolution layers of each dense block, we designed three new compact architectures: MS-DenseNet-41, MS-DenseNet-65, and MS-DenseNet-77. Comparative experiments showed that the compact MS-DenseNet-65 obtained a noticeable improvement in detecting small aircrafts and achieved state-of-the-art performance with a recall of 94% and an F1-score of 92.7% and cost less computational time. Furthermore, the experimental results on robustness of UCAS-AOD and RSOD datasets also indicate the good transferability of our method.


2021 ◽  
Vol 58 (2) ◽  
pp. 0228001
Author(s):  
马天浩 Ma Tianhao ◽  
谭海 Tan Hai ◽  
李天琪 Li Tianqi ◽  
吴雅男 Wu Yanan ◽  
刘祺 Liu Qi

2021 ◽  
Vol 13 (10) ◽  
pp. 1925
Author(s):  
Shengzhou Xiong ◽  
Yihua Tan ◽  
Yansheng Li ◽  
Cai Wen ◽  
Pei Yan

Object detection in remote sensing images (RSIs) is one of the basic tasks in the field of remote sensing image automatic interpretation. In recent years, the deep object detection frameworks of natural scene images (NSIs) have been introduced into object detection on RSIs, and the detection performance has improved significantly because of the powerful feature representation. However, there are still many challenges concerning the particularities of remote sensing objects. One of the main challenges is the missed detection of small objects which have less than five percent of the pixels of the big objects. Generally, the existing algorithms choose to deal with this problem by multi-scale feature fusion based on a feature pyramid. However, the benefits of this strategy are limited, considering that the location of small objects in the feature map will disappear when the detection task is processed at the end of the network. In this study, we propose a subtask attention network (StAN), which handles the detection task directly on the shallow layer of the network. First, StAN contains one shared feature branch and two subtask attention branches of a semantic auxiliary subtask and a detection subtask based on the multi-task attention network (MTAN). Second, the detection branch uses only low-level features considering small objects. Third, the attention map guidance mechanism is put forward to optimize the network for keeping the identification ability. Fourth, the multi-dimensional sampling module (MdS), global multi-view channel weights (GMulW) and target-guided pixel attention (TPA) are designed for further improvement of the detection accuracy in complex scenes. The experimental results on the NWPU VHR-10 dataset and DOTA dataset demonstrated that the proposed algorithm achieved the SOTA performance, and the missed detection of small objects decreased. On the other hand, ablation experiments also proved the effects of MdS, GMulW and TPA.


Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 28
Author(s):  
Ziqiang Yao ◽  
Jinlu Jia ◽  
Yurong Qian

Cloud detection plays a vital role in remote sensing data preprocessing. Traditional cloud detection algorithms have difficulties in feature extraction and thus produce a poor detection result when processing remote sensing images with uneven cloud distribution and complex surface background. To achieve better detection results, a cloud detection method with multi-scale feature extraction and content-aware reassembly network (MCNet) is proposed. Using pyramid convolution and channel attention mechanisms to enhance the model’s feature extraction capability, MCNet can fully extract the spatial information and channel information of clouds in an image. The content-aware reassembly is used to ensure that sampling on the network can recover enough in-depth semantic information and improve the model cloud detection effect. The experimental results show that the proposed MCNet model has achieved good detection results in cloud detection tasks.


2019 ◽  
Vol 11 (18) ◽  
pp. 2095 ◽  
Author(s):  
Kun Fu ◽  
Zhuo Chen ◽  
Yue Zhang ◽  
Xian Sun

In recent years, deep learning has led to a remarkable breakthrough in object detection in remote sensing images. In practice, two-stage detectors perform well regarding detection accuracy but are slow. On the other hand, one-stage detectors integrate the detection pipeline of two-stage detectors to simplify the detection process, and are faster, but with lower detection accuracy. Enhancing the capability of feature representation may be a way to improve the detection accuracy of one-stage detectors. For this goal, this paper proposes a novel one-stage detector with enhanced capability of feature representation. The enhanced capability benefits from two proposed structures: dual top-down module and dense-connected inception module. The former efficiently utilizes multi-scale features from multiple layers of the backbone network. The latter both widens and deepens the network to enhance the ability of feature representation with limited extra computational cost. To evaluate the effectiveness of proposed structures, we conducted experiments on horizontal bounding box detection tasks on the challenging DOTA dataset and gained 73.49% mean Average Precision (mAP), achieving state-of-the-art performance. Furthermore, our method ran significantly faster than the best public two-stage detector on the DOTA dataset.


Sign in / Sign up

Export Citation Format

Share Document