scholarly journals New Board-Level Interconnect Fault Diagnosis Approach in Industrial Applications

2021 ◽  
Vol 10 (1) ◽  
pp. 1427-1440
Author(s):  
Tamer Sayed Abdel Aziz ◽  
Mohamed H. El-Mahlawy
Author(s):  
Jianfeng Jiang

Objective: In order to diagnose the analog circuit fault correctly, an analog circuit fault diagnosis approach on basis of wavelet-based fractal analysis and multiple kernel support vector machine (MKSVM) is presented in the paper. Methods: Time responses of the circuit under different faults are measured, and then wavelet-based fractal analysis is used to process the collected time responses for the purpose of generating features for the signals. Kernel principal component analysis (KPCA) is applied to reduce the features’ dimensionality. Afterwards, features are divided into training data and testing data. MKSVM with its multiple parameters optimized by chaos particle swarm optimization (CPSO) algorithm is utilized to construct an analog circuit fault diagnosis model based on the testing data. Results: The proposed analog diagnosis approach is revealed by a four opamp biquad high-pass filter fault diagnosis simulation. Conclusion: The approach outperforms other commonly used methods in the comparisons.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3382
Author(s):  
Zhongwei Zhang ◽  
Mingyu Shao ◽  
Liping Wang ◽  
Sujuan Shao ◽  
Chicheng Ma

As the key component to transmit power and torque, the fault diagnosis of rotating machinery is crucial to guarantee the reliable operation of mechanical equipment. Regrettably, sample class imbalance is a common phenomenon in industrial applications, which causes large cross-domain distribution discrepancies for domain adaptation (DA) and results in performance degradation for most of the existing mechanical fault diagnosis approaches. To address this issue, a novel DA approach that simultaneously reduces the cross-domain distribution difference and the geometric difference is proposed, which is defined as MRMI. This work contains three parts to improve the sample class imbalance issue: (1) A novel distance metric method (MVD) is proposed and applied to improve the performance of marginal distribution adaptation. (2) Manifold regularization is combined with instance reweighting to simultaneously explore the intrinsic manifold structure and remove irrelevant source-domain samples adaptively. (3) The ℓ2-norm regularization is applied as the data preprocessing tool to improve the model generalization performance. The gear and rolling bearing datasets with class imbalanced samples are applied to validate the reliability of MRMI. According to the fault diagnosis results, MRMI can significantly outperform competitive approaches under the condition of sample class imbalance.


2021 ◽  
Vol 245 ◽  
pp. 114603
Author(s):  
Yongjie Liu ◽  
Kun Ding ◽  
Jingwei Zhang ◽  
Yuanliang Li ◽  
Zenan Yang ◽  
...  

2014 ◽  
Vol 31 (3) ◽  
pp. 65-75 ◽  
Author(s):  
Fangming Ye ◽  
Krishnenedu Chakrabarty ◽  
Zhaobo Zhang ◽  
Xinli Gu

Sign in / Sign up

Export Citation Format

Share Document