scholarly journals Data Association via Set Packing for Computer Vision Applications

2020 ◽  
Vol 2 (3) ◽  
pp. 167-191
Author(s):  
Julian Yarkony ◽  
Yossiri Adulyasak ◽  
Maneesh Singh ◽  
Guy Desaulniers

Significant progress has been made in the field of computer vision because of the development of supervised machine learning algorithms, which efficiently extract information from high-dimensional data such as images and videos. Such techniques are particularly effective at recognizing the presence or absence of entities in the domains where labeled data are abundant. However, supervised learning is not sufficient in applications where one needs to annotate each unique entity in crowded scenes respecting known domain-specific structures of those entities. This problem, known as data association, provides fertile ground for the application of combinatorial optimization. In this review paper, we present a unified framework based on column generation for some computer vision applications, namely multiperson tracking, multiperson pose estimation, and multicell segmentation, which can be formulated as set packing problems with a massive number of variables. To solve them, column generation algorithms are applied to circumvent the need to enumerate all variables explicitly. To enhance the solution process, we provide a general approach for applying subset-row inequalities to tighten the formulations and introduce novel dual-optimal inequalities to reduce the dual search space. The proposed algorithms and their enhancements are successfully applied to solve the three aforementioned computer vision problems and achieve superior performance over benchmark approaches. The common framework presented allows us to leverage operations research methodologies to efficiently tackle computer vision problems.

2020 ◽  
Vol 14 (2) ◽  
pp. 140-159
Author(s):  
Anthony-Paul Cooper ◽  
Emmanuel Awuni Kolog ◽  
Erkki Sutinen

This article builds on previous research around the exploration of the content of church-related tweets. It does so by exploring whether the qualitative thematic coding of such tweets can, in part, be automated by the use of machine learning. It compares three supervised machine learning algorithms to understand how useful each algorithm is at a classification task, based on a dataset of human-coded church-related tweets. The study finds that one such algorithm, Naïve-Bayes, performs better than the other algorithms considered, returning Precision, Recall and F-measure values which each exceed an acceptable threshold of 70%. This has far-reaching consequences at a time where the high volume of social media data, in this case, Twitter data, means that the resource-intensity of manual coding approaches can act as a barrier to understanding how the online community interacts with, and talks about, church. The findings presented in this article offer a way forward for scholars of digital theology to better understand the content of online church discourse.


Author(s):  
Zhixian Liu ◽  
Qingfeng Chen ◽  
Wei Lan ◽  
Jiahai Liang ◽  
Yiping Pheobe Chen ◽  
...  

: Traditional network-based computational methods have shown good results in drug analysis and prediction. However, these methods are time consuming and lack universality, and it is difficult to exploit the auxiliary information of nodes and edges. Network embedding provides a promising way for alleviating the above problems by transforming network into a low-dimensional space while preserving network structure and auxiliary information. This thus facilitates the application of machine learning algorithms for subsequent processing. Network embedding has been introduced into drug analysis and prediction in the last few years, and has shown superior performance over traditional methods. However, there is no systematic review of this issue. This article offers a comprehensive survey of the primary network embedding methods and their applications in drug analysis and prediction. The network embedding technologies applied in homogeneous network and heterogeneous network are investigated and compared, including matrix decomposition, random walk, and deep learning. Especially, the Graph neural network (GNN) methods in deep learning are highlighted. Further, the applications of network embedding in drug similarity estimation, drug-target interaction prediction, adverse drug reactions prediction, protein function and therapeutic peptides prediction are discussed. Several future potential research directions are also discussed.


2021 ◽  
Vol 1916 (1) ◽  
pp. 012042
Author(s):  
Ranjani Dhanapal ◽  
A AjanRaj ◽  
S Balavinayagapragathish ◽  
J Balaji

2021 ◽  
Vol 11 (15) ◽  
pp. 6787
Author(s):  
Jože M. Rožanec ◽  
Blaž Kažič ◽  
Maja Škrjanc ◽  
Blaž Fortuna ◽  
Dunja Mladenić

Demand forecasting is a crucial component of demand management, directly impacting manufacturing companies’ planning, revenues, and actors through the supply chain. We evaluate 21 baseline, statistical, and machine learning algorithms to forecast smooth and erratic demand on a real-world use case scenario. The products’ data were obtained from a European original equipment manufacturer targeting the global automotive industry market. Our research shows that global machine learning models achieve superior performance than local models. We show that forecast errors from global models can be constrained by pooling product data based on the past demand magnitude. We also propose a set of metrics and criteria for a comprehensive understanding of demand forecasting models’ performance.


Diagnostics ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 642
Author(s):  
Yi-Da Wu ◽  
Ruey-Kai Sheu ◽  
Chih-Wei Chung ◽  
Yen-Ching Wu ◽  
Chiao-Chi Ou ◽  
...  

Background: Antinuclear antibody pattern recognition is vital for autoimmune disease diagnosis but labor-intensive for manual interpretation. To develop an automated pattern recognition system, we established machine learning models based on the International Consensus on Antinuclear Antibody Patterns (ICAP) at a competent level, mixed patterns recognition, and evaluated their consistency with human reading. Methods: 51,694 human epithelial cells (HEp-2) cell images with patterns assigned by experienced medical technologists collected in a medical center were used to train six machine learning algorithms and were compared by their performance. Next, we choose the best performing model to test the consistency with five experienced readers and two beginners. Results: The mean F1 score in each classification of the best performing model was 0.86 evaluated by Testing Data 1. For the inter-observer agreement test on Testing Data 2, the average agreement was 0.849 (?) among five experienced readers, 0.844 between the best performing model and experienced readers, 0.528 between experienced readers and beginners. The results indicate that the proposed model outperformed beginners and achieved an excellent agreement with experienced readers. Conclusions: This study demonstrated that the developed model could reach an excellent agreement with experienced human readers using machine learning methods.


Author(s):  
David Blondheim

AbstractMachine learning (ML) is unlocking patterns and insight into data to provide financial value and knowledge for organizations. Use of machine learning in manufacturing environments is increasing, yet sometimes these applications fail to produce meaningful results. A critical review of how defects are classified is needed to appropriately apply machine learning in a production foundry and other manufacturing processes. Four elements associated with defect classification are proposed: Binary Acceptance Specifications, Stochastic Formation of Defects, Secondary Process Variation, and Visual Defect Inspection. These four elements create data space overlap, which influences the bias associated with training supervised machine learning algorithms. If this influence is significant enough, the predicted error of the model exceeds a critical error threshold (CET). There is no financial motivation to implement the ML model in the manufacturing environment if its error is greater than the CET. The goal is to bring awareness to these four elements, define the critical error threshold, and offer guidance and future study recommendations on data collection and machine learning that will increase the success of ML within manufacturing.


2021 ◽  
Vol 11 (15) ◽  
pp. 6728
Author(s):  
Muhammad Asfand Hafeez ◽  
Muhammad Rashid ◽  
Hassan Tariq ◽  
Zain Ul Abideen ◽  
Saud S. Alotaibi ◽  
...  

Classification and regression are the major applications of machine learning algorithms which are widely used to solve problems in numerous domains of engineering and computer science. Different classifiers based on the optimization of the decision tree have been proposed, however, it is still evolving over time. This paper presents a novel and robust classifier based on a decision tree and tabu search algorithms, respectively. In the aim of improving performance, our proposed algorithm constructs multiple decision trees while employing a tabu search algorithm to consistently monitor the leaf and decision nodes in the corresponding decision trees. Additionally, the used tabu search algorithm is responsible to balance the entropy of the corresponding decision trees. For training the model, we used the clinical data of COVID-19 patients to predict whether a patient is suffering. The experimental results were obtained using our proposed classifier based on the built-in sci-kit learn library in Python. The extensive analysis for the performance comparison was presented using Big O and statistical analysis for conventional supervised machine learning algorithms. Moreover, the performance comparison to optimized state-of-the-art classifiers is also presented. The achieved accuracy of 98%, the required execution time of 55.6 ms and the area under receiver operating characteristic (AUROC) for proposed method of 0.95 reveals that the proposed classifier algorithm is convenient for large datasets.


Sign in / Sign up

Export Citation Format

Share Document