scholarly journals Automotive OEM Demand Forecasting: A Comparative Study of Forecasting Algorithms and Strategies

2021 ◽  
Vol 11 (15) ◽  
pp. 6787
Author(s):  
Jože M. Rožanec ◽  
Blaž Kažič ◽  
Maja Škrjanc ◽  
Blaž Fortuna ◽  
Dunja Mladenić

Demand forecasting is a crucial component of demand management, directly impacting manufacturing companies’ planning, revenues, and actors through the supply chain. We evaluate 21 baseline, statistical, and machine learning algorithms to forecast smooth and erratic demand on a real-world use case scenario. The products’ data were obtained from a European original equipment manufacturer targeting the global automotive industry market. Our research shows that global machine learning models achieve superior performance than local models. We show that forecast errors from global models can be constrained by pooling product data based on the past demand magnitude. We also propose a set of metrics and criteria for a comprehensive understanding of demand forecasting models’ performance.

Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 294 ◽  
Author(s):  
Md Shamsur Rahim ◽  
Khoi Anh Nguyen ◽  
Rodney Anthony Stewart ◽  
Damien Giurco ◽  
Michael Blumenstein

Digital or intelligent water meters are being rolled out globally as a crucial component in improving urban water management. This is because of their ability to frequently send water consumption information electronically and later utilise the information to generate insights or provide feedback to consumers. Recent advances in machine learning (ML) and data analytic (DA) technologies have provided the opportunity to more effectively utilise the vast amount of data generated by these meters. Several studies have been conducted to promote water conservation by analysing the data generated by digital meters and providing feedback to consumers and water utilities. The purpose of this review was to inform scholars and practitioners about the contributions and limitations of ML and DA techniques by critically analysing the relevant literature. We categorised studies into five main themes: (1) water demand forecasting; (2) socioeconomic analysis; (3) behaviour analysis; (4) water event categorisation; and (5) water-use feedback. The review identified significant research gaps in terms of the adoption of advanced ML and DA techniques, which could potentially lead to water savings and more efficient demand management. We concluded that further investigations are required into highly personalised feedback systems, such as recommender systems, to promote water-conscious behaviour. In addition, advanced data management solutions, effective user profiles, and the clustering of consumers based on their profiles require more attention to promote water-conscious behaviours.


2015 ◽  
Vol 32 (6) ◽  
pp. 821-827 ◽  
Author(s):  
Enrique Audain ◽  
Yassel Ramos ◽  
Henning Hermjakob ◽  
Darren R. Flower ◽  
Yasset Perez-Riverol

Abstract Motivation: In any macromolecular polyprotic system—for example protein, DNA or RNA—the isoelectric point—commonly referred to as the pI—can be defined as the point of singularity in a titration curve, corresponding to the solution pH value at which the net overall surface charge—and thus the electrophoretic mobility—of the ampholyte sums to zero. Different modern analytical biochemistry and proteomics methods depend on the isoelectric point as a principal feature for protein and peptide characterization. Protein separation by isoelectric point is a critical part of 2-D gel electrophoresis, a key precursor of proteomics, where discrete spots can be digested in-gel, and proteins subsequently identified by analytical mass spectrometry. Peptide fractionation according to their pI is also widely used in current proteomics sample preparation procedures previous to the LC-MS/MS analysis. Therefore accurate theoretical prediction of pI would expedite such analysis. While such pI calculation is widely used, it remains largely untested, motivating our efforts to benchmark pI prediction methods. Results: Using data from the database PIP-DB and one publically available dataset as our reference gold standard, we have undertaken the benchmarking of pI calculation methods. We find that methods vary in their accuracy and are highly sensitive to the choice of basis set. The machine-learning algorithms, especially the SVM-based algorithm, showed a superior performance when studying peptide mixtures. In general, learning-based pI prediction methods (such as Cofactor, SVM and Branca) require a large training dataset and their resulting performance will strongly depend of the quality of that data. In contrast with Iterative methods, machine-learning algorithms have the advantage of being able to add new features to improve the accuracy of prediction. Contact: [email protected] Availability and Implementation: The software and data are freely available at https://github.com/ypriverol/pIR. Supplementary information: Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Nalindren Naicker ◽  
Timothy Adeliyi ◽  
Jeanette Wing

Educational Data Mining (EDM) is a rich research field in computer science. Tools and techniques in EDM are useful to predict student performance which gives practitioners useful insights to develop appropriate intervention strategies to improve pass rates and increase retention. The performance of the state-of-the-art machine learning classifiers is very much dependent on the task at hand. Investigating support vector machines has been used extensively in classification problems; however, the extant of literature shows a gap in the application of linear support vector machines as a predictor of student performance. The aim of this study was to compare the performance of linear support vector machines with the performance of the state-of-the-art classical machine learning algorithms in order to determine the algorithm that would improve prediction of student performance. In this quantitative study, an experimental research design was used. Experiments were set up using feature selection on a publicly available dataset of 1000 alpha-numeric student records. Linear support vector machines benchmarked with ten categorical machine learning algorithms showed superior performance in predicting student performance. The results of this research showed that features like race, gender, and lunch influence performance in mathematics whilst access to lunch was the primary factor which influences reading and writing performance.


2019 ◽  
Vol 8 (3) ◽  
pp. 1572-1580

Tourism is one of the most important sectors contributing towards the economic growth of India. Big data analytics in the recent times is being applied in the tourism sector for the activities like tourism demand forecasting, prediction of interests of tourists’, identification of tourist attraction elements and behavioural patterns. The major objective of this study is to demonstrate how big data analytics could be applied in predicting the travel behaviour of International and Domestic tourists. The significance of machine learning algorithms and techniques in processing the big data is also important. Thus, the combination of machine learning and big data is the state-of-art method which has been acclaimed internationally. While big data analytics and its application with respect to the tourism industry has attracted few researchers interest in the present times, there have been not much researches on this area of study particularly with respect to the scenario of India. This study intends to describe how big data analytics could be used in forecasting Indian tourists travel behaviour. To add much value to the research this study intends to categorize on what grounds the tourists chose domestic tourism and on what grounds they chose international tourism. The online datasets on places reviews from cities namely Chicago, Beijing, New York, Dubai, San Francisco, London, New Delhi and Shanghai have been gathered and an associative rule mining based algorithm has been applied on the data set in order to attain the objectives of the study


Author(s):  
Shuangxia Ren ◽  
Jill Zupetic ◽  
Mehdi Nouraie ◽  
Xinghua Lu ◽  
Richard D. Boyce ◽  
...  

AbstractBackgroundThe partial pressure of oxygen (PaO2)/fraction of oxygen delivered (FIO2) ratio is the reference standard for assessment of hypoxemia in mechanically ventilated patients. Non-invasive monitoring with the peripheral saturation of oxygen (SpO2) is increasingly utilized to estimate PaO2 because it does not require invasive sampling. Several equations have been reported to impute PaO2/FIO2 from SpO2 /FIO2. However, machine-learning algorithms to impute the PaO2 from the SpO2 has not been compared to published equations.Research QuestionHow do machine learning algorithms perform at predicting the PaO2 from SpO2 compared to previously published equations?MethodsThree machine learning algorithms (neural network, regression, and kernel-based methods) were developed using 7 clinical variable features (n=9,900 ICU events) and subsequently 3 features (n=20,198 ICU events) as input into the models from data available in mechanically ventilated patients from the Medical Information Mart for Intensive Care (MIMIC) III database. As a regression task, the machine learning models were used to impute PaO2 values. As a classification task, the models were used to predict patients with moderate-to-severe hypoxemic respiratory failure based on a clinically relevant cut-off of PaO2/FIO2 ≤ 150. The accuracy of the machine learning models was compared to published log-linear and non-linear equations. An online imputation calculator was created.ResultsCompared to seven features, three features (SpO2, FiO2 and PEEP) were sufficient to impute PaO2/FIO2 ratio using a large dataset. Any of the tested machine learning models enabled imputation of PaO2/FIO2 from the SpO2/FIO2 with lower error and had greater accuracy in predicting PaO2/FIO2 ≤ 150 compared to published equations. Using three features, the machine learning models showed superior performance in imputing PaO2 across the entire span of SpO2 values, including those ≥ 97%.InterpretationThe improved performance shown for the machine learning algorithms suggests a promising framework for future use in large datasets.


Author(s):  
Aaron Rodrigues

Abstract: Food sales forecasting is concerned with predicting future sales of food-related businesses such as supermarkets, grocery stores, restaurants, bakeries, and patisseries. Companies can reduce stocked and expired products within stores while also avoiding missing revenues by using accurate short-term sales forecasting. This research examines current machine learning algorithms for predicting food purchases. It goes over key design considerations for a data analyst working on food sales forecasting’s, such as the temporal granularity of sales data, the input variables to employ for forecasting sales, and the representation of the sales output variable. It also examines machine learning algorithms that have been used to anticipate food sales and the proper metrics for assessing their performance. Finally, it goes over the major problems and prospects for applied machine learning in the field of food sales forecasting. Keywords: Food, Demand forecasting, Machine learning, Regression, Timeseries forecasting, Sales prediction


Entropy ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 1310
Author(s):  
Ioannis Triantafyllou ◽  
Ioannis C. Drivas ◽  
Georgios Giannakopoulos

Acquiring knowledge about users’ opinion and what they say regarding specific features within an app, constitutes a solid steppingstone for understanding their needs and concerns. App review utilization helps project management teams to identify threads and opportunities for app software maintenance, optimization and strategic marketing purposes. Nevertheless, app user review classification for identifying valuable gems of information for app software improvement, is a complex and multidimensional issue. It requires foresight and multiple combinations of sophisticated text pre-processing, feature extraction and machine learning methods to efficiently classify app reviews into specific topics. Against this backdrop, we propose a novel feature engineering classification schema that is capable to identify more efficiently and earlier terms-words within reviews that could be classified into specific topics. For this reason, we present a novel feature extraction method, the DEVMAX.DF combined with different machine learning algorithms to propose a solution in app review classification problems. One step further, a simulation of a real case scenario takes place to validate the effectiveness of the proposed classification schema into different apps. After multiple experiments, results indicate that the proposed schema outperforms other term extraction methods such as TF.IDF and χ2 to classify app reviews into topics. To this end, the paper contributes to the knowledge expansion of research and practitioners with the purpose to reinforce their decision-making process within the realm of app reviews utilization.


2019 ◽  
Vol 14 (4) ◽  
pp. 1042-1063 ◽  
Author(s):  
Rahul Priyadarshi ◽  
Akash Panigrahi ◽  
Srikanta Routroy ◽  
Girish Kant Garg

Purpose The purpose of this study is to select the appropriate forecasting model at the retail stage for selected vegetables on the basis of performance analysis. Design/methodology/approach Various forecasting models such as the Box–Jenkins-based auto-regressive integrated moving average model and machine learning-based algorithms such as long short-term memory (LSTM) networks, support vector regression (SVR), random forest regression, gradient boosting regression (GBR) and extreme GBR (XGBoost/XGBR) were proposed and applied (i.e. modeling, training, testing and predicting) at the retail stage for selected vegetables to forecast demand. The performance analysis (i.e. forecasting error analysis) was carried out to select the appropriate forecasting model at the retail stage for selected vegetables. Findings From the obtained results for a case environment, it was observed that the machine learning algorithms, namely LSTM and SVR, produced the better results in comparison with other different demand forecasting models. Research limitations/implications The results obtained from the case environment cannot be generalized. However, it may be used for forecasting of different agriculture produces at the retail stage, capturing their demand environment. Practical implications The implementation of LSTM and SVR for the case situation at the retail stage will reduce the forecast error, daily retail inventory and fresh produce wastage and will increase the daily revenue. Originality/value The demand forecasting model selection for agriculture produce at the retail stage on the basis of performance analysis is a unique study where both traditional and non-traditional models were analyzed and compared.


2020 ◽  
Vol 12 (11) ◽  
pp. 1838 ◽  
Author(s):  
Zhao Zhang ◽  
Paulo Flores ◽  
C. Igathinathane ◽  
Dayakar L. Naik ◽  
Ravi Kiran ◽  
...  

The current mainstream approach of using manual measurements and visual inspections for crop lodging detection is inefficient, time-consuming, and subjective. An innovative method for wheat lodging detection that can overcome or alleviate these shortcomings would be welcomed. This study proposed a systematic approach for wheat lodging detection in research plots (372 experimental plots), which consisted of using unmanned aerial systems (UAS) for aerial imagery acquisition, manual field evaluation, and machine learning algorithms to detect the occurrence or not of lodging. UAS imagery was collected on three different dates (23 and 30 July 2019, and 8 August 2019) after lodging occurred. Traditional machine learning and deep learning were evaluated and compared in this study in terms of classification accuracy and standard deviation. For traditional machine learning, five types of features (i.e. gray level co-occurrence matrix, local binary pattern, Gabor, intensity, and Hu-moment) were extracted and fed into three traditional machine learning algorithms (i.e., random forest (RF), neural network, and support vector machine) for detecting lodged plots. For the datasets on each imagery collection date, the accuracies of the three algorithms were not significantly different from each other. For any of the three algorithms, accuracies on the first and last date datasets had the lowest and highest values, respectively. Incorporating standard deviation as a measurement of performance robustness, RF was determined as the most satisfactory. Regarding deep learning, three different convolutional neural networks (simple convolutional neural network, VGG-16, and GoogLeNet) were tested. For any of the single date datasets, GoogLeNet consistently had superior performance over the other two methods. Further comparisons between RF and GoogLeNet demonstrated that the detection accuracies of the two methods were not significantly different from each other (p > 0.05); hence, the choice of any of the two would not affect the final detection accuracies. However, considering the fact that the average accuracy of GoogLeNet (93%) was larger than RF (91%), it was recommended to use GoogLeNet for wheat lodging detection. This research demonstrated that UAS RGB imagery, coupled with the GoogLeNet machine learning algorithm, can be a novel, reliable, objective, simple, low-cost, and effective (accuracy > 90%) tool for wheat lodging detection.


Sign in / Sign up

Export Citation Format

Share Document