scholarly journals A Sharp Upper Bound for the Expected Number of Shadow Vertices in LP-Polyhedra Under Orthogonal Projection on Two-Dimensional Planes

1999 ◽  
Vol 24 (3) ◽  
pp. 544-603 ◽  
Author(s):  
Karl Heinz Borgwardt
1969 ◽  
Vol 9 (3-4) ◽  
pp. 503-510
Author(s):  
William J. Firey

Consider a non-degenerate convex body K in a Euclidean (n + 1)-dimensional space of points (x, z) = (x1,…, xn, z) where n ≧2. Denote by μ the maximum length of segments in K which are parallel to the z-axis, and let Aj, signify the area (two dimensional volume) of the orthogonal projection of K onto the linear subspace spanned by the z- and xj,-axes. We shall prove that the volume V(K) of K satisfies After this, some applications of (1) are discussed.


Algorithmica ◽  
2021 ◽  
Author(s):  
Seungbum Jo ◽  
Rahul Lingala ◽  
Srinivasa Rao Satti

AbstractWe consider the problem of encoding two-dimensional arrays, whose elements come from a total order, for answering $${\text{Top-}}{k}$$ Top- k queries. The aim is to obtain encodings that use space close to the information-theoretic lower bound, which can be constructed efficiently. For an $$m \times n$$ m × n array, with $$m \le n$$ m ≤ n , we first propose an encoding for answering 1-sided $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries, whose query range is restricted to $$[1 \dots m][1 \dots a]$$ [ 1 ⋯ m ] [ 1 ⋯ a ] , for $$1 \le a \le n$$ 1 ≤ a ≤ n . Next, we propose an encoding for answering for the general (4-sided) $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries that takes $$(m\lg {{(k+1)n \atopwithdelims ()n}}+2nm(m-1)+o(n))$$ ( m lg ( k + 1 ) n n + 2 n m ( m - 1 ) + o ( n ) ) bits, which generalizes the joint Cartesian tree of Golin et al. [TCS 2016]. Compared with trivial $$O(nm\lg {n})$$ O ( n m lg n ) -bit encoding, our encoding takes less space when $$m = o(\lg {n})$$ m = o ( lg n ) . In addition to the upper bound results for the encodings, we also give lower bounds on encodings for answering 1 and 4-sided $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries, which show that our upper bound results are almost optimal.


2010 ◽  
Vol DMTCS Proceedings vol. AM,... (Proceedings) ◽  
Author(s):  
Thomas Fernique ◽  
Damien Regnault

International audience This paper introduces a Markov process inspired by the problem of quasicrystal growth. It acts over dimer tilings of the triangular grid by randomly performing local transformations, called $\textit{flips}$, which do not increase the number of identical adjacent tiles (this number can be thought as the tiling energy). Fixed-points of such a process play the role of quasicrystals. We are here interested in the worst-case expected number of flips to converge towards a fixed-point. Numerical experiments suggest a $\Theta (n^2)$ bound, where $n$ is the number of tiles of the tiling. We prove a $O(n^{2.5})$ upper bound and discuss the gap between this bound and the previous one. We also briefly discuss the average-case.


2019 ◽  
Vol 34 (28) ◽  
pp. 1950168 ◽  
Author(s):  
M. Ashrafi

Using modular bootstrap we show the lightest primary fields of a unitary compact two-dimensional conformal field theory (with [Formula: see text], [Formula: see text]) has a conformal weight [Formula: see text]. This implies that the upper bound on the dimension of the lightest primary fields depends on their spin. In particular if the set of lightest primary fields includes extremal or near extremal states whose spin to dimension ratio [Formula: see text], the corresponding dimension is [Formula: see text]. From AdS/CFT correspondence, we obtain an upper bound on the spectrum of black hole in three-dimensional gravity. Our results show that if the first primary fields have large spin, the corresponding three-dimensional gravity has extremal or near extremal BTZ black hole.


Author(s):  
P. A. P. Moran

We consider bounded sets in a plane. If X is such a set, we denote by Pθ(X) the projection of X on the line y = x tan θ, where x and y belong to some fixed coordinate system. By f(θ, X) we denote the measure of Pθ(X), taking this, in general, as an outer Lebesgue measure. The least upper bound of f (θ, X) for all θ we denote by M. We write sm X for the outer two-dimensional Lebesgue measure of X. Then G. Szekeres(1) has proved that if X consists of a finite number of continua,Béla v. Sz. Nagy(2) has obtained a stronger inequality, and it is the purpose of this paper to show that these results hold for more general classes of sets.


Sign in / Sign up

Export Citation Format

Share Document