Routing Electric Vehicles on Congested Street Networks

Author(s):  
Alexandre M. Florio ◽  
Nabil Absi ◽  
Dominique Feillet

Freight distribution with electric vehicles (EVs) is a promising alternative to reduce the carbon footprint associated with city logistics. Algorithms for planning routes for EVs should take into account their relatively short driving range and the effects of traffic congestion on the battery consumption. This paper proposes new methodology and illustrates how it can be applied to solve an electric vehicle routing problem with stochastic and time-dependent travel times where battery recharging along routes is not allowed. First, a new method for generating network-consistent (correlated in time and space) and time-dependent speed scenarios is introduced. Second, a new technique for applying branch and price on instances defined on real street networks is developed. Computational experiments demonstrate the effectiveness of the approach for finding optimal or near-optimal solutions in instances with up to 133 customers and almost 1,500 road links. With a high probability, the routes in the obtained solutions can be performed by EVs without requiring intermediate recharging stops. An execution time control policy to further reduce the chances of stranded EVs is also presented. In addition, we measure the cost of independence, which is the impact on solution feasibility when travel times are assumed statistically independent. Last, we give directions on how to extend the proposed framework to handle recourse actions.

2018 ◽  
Vol 200 ◽  
pp. 00006 ◽  
Author(s):  
Hanane El Raoui ◽  
Mustapha Oudani ◽  
Ahmed El Hilali Alaoui

Freight transport is essential to modern urban civilization. No urban area could exist without a powerful freight transport system. However, the distribution of perishable foods in urban areas is seen as a source of problems, due to traffic congestion, time pressures, and environmental impact. In this paper, an Agent-Based Model integrated with Geographic Information Systems (ABM-GIS) is designed for a time-dependent vehicle routing problem with time windows. This simulation model consists of determining the quickest routes to transport fresh products, estimating Vehicle kilometer traveled VKT and vehicle hour traveled VHT where speeds and travel times depend on the time of the day. Based on a case study, analyses of changes on traffic condition were conducted to get an insight into the impact of these changes on cost, service quality represented by the respect of time windows, and carbon emissions. The results reveal that traffic jams and restrictive time windows lead to additional cost, cause delays, and increase co2 emission. As for a short-term planning, time-dependent scheduling algorithm was proposed and assessed while extending time windows. Results have proved the potential saving in cost, travel time, and carbon emission.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Jingmei Guo ◽  
Chao Liu

The time-dependent pollution-routing problem of free pickup and delivery of passengers to the airport service (TDFPDS) is an extension of the time-dependent pollution-routing problems, arising in flight ticket sales companies for the service of free pickup and delivery of airline passengers to the airport. The problem consists of routing a fleet of vehicles in order to deliver a set of customers to the airport considering the traffic congestion, time window constraints, and maximum ride time constraints. The cost function includes fuel consumption and driver costs. We provide an analytical characterization of the optimal solutions for a fixed route and propose a novel heuristic for a given route based on the analysis of the illustrative examples. The heuristic algorithm is embedded into a set-partitioning model to produce high-quality routing plans. Finally, using wide variety of random instances, we present results on the computational performance of the heuristic and also on the impact of the congestion and the maximum ride time constraints.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Wen Xu ◽  
JiaJun Li

The time-dependent vehicle routing problems have lately received great attention for logistics companies due to their crucial roles in reducing the time and economic costs, as well as fuel consumption and carbon emissions. However, the dynamic routing environment and traffic congestions have made it challenging to make the actual travelling trajectory optimal during the delivery process. To overcome this challenge, this study proposed an unconventional path optimization approach, fissile ripple spreading algorithm (FRSA), which is based on the advanced structure of coevolutionary path optimization (CEPO). The objective of the proposed model is to minimize the travelling time and path length of the vehicle, which are the popular indicators in path optimization. Some significant factors usually ignored in other research are considered in this study, such as congestion evolution, routing environment dynamics, signal control, and the complicated correlation between delivery sequence and the shortest path. The effectiveness of the proposed approach was demonstrated well in two sets of simulated experiments. The results prove that the proposed FRSA can scientifically find out the optimal delivery trajectory in a single run via global research, effectively avoid traffic congestion, and decrease the total delivery costs. This finding paves a new way to explore a promising methodology for addressing the delivery sequence and the shortest path problems at the same time. This study can provide theoretical support for the practical application in logistics delivery.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Shichao Sun ◽  
Zhengyu Duan ◽  
Dongyuan Yang

This paper addressed the vehicle routing problem (VRP) in large-scale urban transportation networks with stochastic time-dependent (STD) travel times. The subproblem which is how to find the optimal path connecting any pair of customer nodes in a STD network was solved through a robust approach without requiring the probability distributions of link travel times. Based on that, the proposed STD-VRP model can be converted into solving a normal time-dependent VRP (TD-VRP), and algorithms for such TD-VRPs can also be introduced to obtain the solution. Numerical experiments were conducted to address STD-VRPTW of practical sizes on a real world urban network, demonstrated here on the road network of Shenzhen, China. The stochastic time-dependent link travel times of the network were calibrated by historical floating car data. A route construction algorithm was applied to solve the STD problem in 4 delivery scenarios efficiently. The computational results showed that the proposed STD-VRPTW model can improve the level of customer service by satisfying the time-window constraint under any circumstances. The improvement can be very significant especially for large-scale network delivery tasks with no more increase in cost and environmental impacts.


2021 ◽  
pp. 105316
Author(s):  
Ingeborg Margrete Lianes ◽  
Maren Theisen Noreng ◽  
Kjetil Fagerholt ◽  
Hans Tobias Slette ◽  
Frank Meisel

Sign in / Sign up

Export Citation Format

Share Document