scholarly journals Variability of Soil Properties in Eroded Agricultural Landscape

2020 ◽  
Vol 21 (1) ◽  
pp. 72-80
Author(s):  
Agnieszka Wysocka-Czubaszek
2012 ◽  
Vol 5 ◽  
pp. ASWR.S9268 ◽  
Author(s):  
Raymon S. Shange ◽  
Ramble O. Ankumah ◽  
Leonard Githinji ◽  
Robert Zabawa

Waste resulting from industrial poultry production systems is becoming an increasingly significant environmental problem in the US, threatening both soil and water quality. The goal of this study was to assess the spatial variability and interactions of selected soil properties (physical, chemical, and biochemical), viz., particle size, pH, enzymatic activity, Soil Organic Carbon (SOC), and Total Nitrogen (TN), across an agricultural landscape used for industrial poultry production. The measured soil properties were separated according to biochemical constituents and soil texture based on the first two principal components, accounting for approximately 60% of the variability across the site. These principal components were then used to generate soil surface maps, indicating areas of possible catalytic activity. Surface maps showed possible increases in biochemical activity around areas of stored poultry litter, suggesting the utility of these methods in determining changes to soil management.


2016 ◽  
Vol 06 (05) ◽  
pp. 264-276 ◽  
Author(s):  
Mathayo Mpanda Mathew ◽  
Amos E. Majule ◽  
Fergus Sinclair ◽  
Rob Marchant

Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 189
Author(s):  
Jinbiao Li ◽  
Jin-Hyeob Kwak ◽  
Scott X. Chang ◽  
Xiaoqiang Gong ◽  
Zhengfeng An ◽  
...  

Forestlands are widely distributed in the dominantly agricultural landscape in western Canada, and they play important ecological functions; such forestlands (e.g., shelterbelts) accumulate soil organic matter and may receive a substantial amount of nitrogen in the form of surface and subsurface runoff from adjacent croplands and become a significant source of emissions of greenhouse gases (GHGs) such as CO2, N2O, and CH4. Biochar and nitrapyrin applications could potentially mitigate GHG emissions, but their co-application in forest soils has not been studied. We investigated the effect of the application of biochars produced at low (300 °C; BC300) and high temperatures (700 °C; BC700) using canola (Brassica napus L.) straw and the effect of their co-application with nitrapyrin on GHG emissions and soil properties in a 35-day laboratory incubation experiment using forest soils collected from five shelterbelt sites. Results showed no significant interaction effect of biochar and nitrapyrin on the global warming potential (GWP) of the GHG emissions, and the GWP was 15.8% lower in the soil with nitrapyrin than without nitrapyrin application treatments. The GWP was significantly enhanced by BC300 addition due to a 26.9% and 627.1% increase in cumulative CO2 and N2O emissions, respectively, over the 35-day incubation. The GWP significantly decreased by BC700 addition due to a 27.1% decrease in cumulative CO2 emissions. However, biochar addition did not affect CH4 emissions, while nitrapyrin decreased CH4 uptake by 50.5%. With BC300 addition, soil-dissolved organic carbon and microbial biomass carbon increased by 26.5% and 33.9%, respectively, as compared to no biochar addition (CK). Soil pH increased by 0.16 and 0.37 units after the addition of BC300 and BC700, respectively. Overall, the effect of biochar and nitrapyrin was independent in mitigating GHG emissions and was related to the type of biochar applied and changes in soil properties.


2022 ◽  
Vol 326 ◽  
pp. 107803
Author(s):  
Linh T.T. Nguyen ◽  
Kaleb A. Ortner ◽  
Lisa K. Tiemann ◽  
Karen A. Renner ◽  
Alexandra N. Kravchenko

2014 ◽  
Vol 11 (1) ◽  
pp. 15
Author(s):  
Set Foong Ng ◽  
Pei Eng Ch’ng ◽  
Yee Ming Chew ◽  
Kok Shien Ng

Soil properties are very crucial for civil engineers to differentiate one type of soil from another and to predict its mechanical behavior. However, it is not practical to measure soil properties at all the locations at a site. In this paper, an estimator is derived to estimate the unknown values for soil properties from locations where soil samples were not collected. The estimator is obtained by combining the concept of the ‘Inverse Distance Method’ into the technique of ‘Kriging’. The method of Lagrange Multipliers is applied in this paper. It is shown that the estimator derived in this paper is an unbiased estimator. The partiality of the estimator with respect to the true value is zero. Hence, the estimated value will be equal to the true value of the soil property. It is also shown that the variance between the estimator and the soil property is minimised. Hence, the distribution of this unbiased estimator with minimum variance spreads the least from the true value. With this characteristic of minimum variance unbiased estimator, a high accuracy estimation of soil property could be obtained.


Sign in / Sign up

Export Citation Format

Share Document