scholarly journals Spatial Assessment of Selected Soil Properties within an Industrial Poultry Production Site

2012 ◽  
Vol 5 ◽  
pp. ASWR.S9268 ◽  
Author(s):  
Raymon S. Shange ◽  
Ramble O. Ankumah ◽  
Leonard Githinji ◽  
Robert Zabawa

Waste resulting from industrial poultry production systems is becoming an increasingly significant environmental problem in the US, threatening both soil and water quality. The goal of this study was to assess the spatial variability and interactions of selected soil properties (physical, chemical, and biochemical), viz., particle size, pH, enzymatic activity, Soil Organic Carbon (SOC), and Total Nitrogen (TN), across an agricultural landscape used for industrial poultry production. The measured soil properties were separated according to biochemical constituents and soil texture based on the first two principal components, accounting for approximately 60% of the variability across the site. These principal components were then used to generate soil surface maps, indicating areas of possible catalytic activity. Surface maps showed possible increases in biochemical activity around areas of stored poultry litter, suggesting the utility of these methods in determining changes to soil management.

2018 ◽  
Vol 18 (2) ◽  
Author(s):  
Janaina Biral dos Santos ◽  
Alessandro Coutinho Ramos ◽  
Romildo Azevedo Júnior ◽  
Luís Carlos Iuñes de Oliveira Filho ◽  
Dilmar Baretta ◽  
...  

Abstract: Brazil has always been one of the most important coffee producing countries. Lately, there has equally been a renewed interest in alternative coffee production systems. The state of Espírito Santo is the second greatest coffee producer in Brazil; so, we used local coffee plantations to evaluate the relations between soil macrofauna and chemical and microbiological soil properties to identify which of these properties discriminate more effectively between the organic management system (OS) and the conventional management system (CS) of coffee plantations. For each of these two cultivation systems we chose three coffee farms who employed both cultivation systems and picked out the most similar fields from each property. At each site, first we sampled the litter at the soil surface. Afterwards, we sampled nine soil monoliths to evaluate the macrofauna, in summer and winter. We also collected nine supplemental soil samples, taken at a few centimeters from the soil monoliths, for chemical and microbiological analyses. Macrofauna density was evaluated by ANOVA and multivariate analysis. The chemical and microbiological properties are environmental variables, while the data on macrofauna are the explanatory variables. The total number of individuals recovered in this study was 3,354, and the climate, identified by the sampling season, was a great modulator of macrofauna, with higher numbers in winter. The principal components analysis showed that soil moisture, organic matter, nitrogen, phosphorus, boron, copper, pH, acid and alkaline phosphatases and microbial biomass carbon, were the most outstanding ones to discriminate both cultivation systems. We found no statistical significant differences in macrofauna density between OS and CS, probably due to a general great variability, since there was a tendency for much greater values in OS. We detected the interference of chemical and microbiological soil properties on the macrofauna community in both systems of coffee cultivation, and some results clearly correlated much better with climate data than with other factors. To our knowledge, this is the first time in which the data point to a clear separation between the more numerous and diversified soil macrofauna in coffee with organic cultivation from that with a conventional cultivation system.


2020 ◽  
Author(s):  
Ana Clara Caprile ◽  
Virginia Aparicio ◽  
María Liliana Darder ◽  
Eduardo De Gerónimo ◽  
Adrian Andriulo

<p>Soil losses due to water erosion exceed the tolerance in the edafoclimatic conditions of the rolling pampas. Erosion sediments transport pesticides outside their own limits. Increased knowledge about its polluting potential would allow agronomic practices to be redirected towards sustainability. The objectives of this work were to: a) analyze herbicide distribution patterns frequently used in agricultural production and b) evaluate some herbicide and soil properties to explain their landscape distribution pattern. In an area under exclusively agricultural production of the upper basin of Pergamino stream, rain simulations were carried out in different landscape positions (upland, mid slope, and lowland). In the upland and mid slope (well-drained Mollisols) agriculture is practiced with soybean monoculture tendency under no tillage; in the lowland (Mollisols and alkaline and saline Alfisols), cattle breeding and rearing is carried-out on improved grasslands. Sediments were obtained using a rain simulator for one hour at high intensity (60 mm h<sup>-1</sup>) at 23 sampling points. In the sediments, 2.4-D, acetochlor, atrazine and metabolites, flurochloridone, glyphosate and AMPA, and s-metolachlor concentrations were determined. In addition, the following variables: basic infiltration, runoff coefficient (%), slope, amount of sediments, texture, soil organic carbon (SOC), pH, electrical conductivity and exchangeable sodium at 0-5 cm were obtained. Non-parametric tests of herbicide concentrations between landscape positions and correlations with the analyzed variables were performed. The production systems practiced in the landscape different positions, even with low grade slopes, against heavy rains, favor surface runoff (between 45 and 64%) and generate significant sediment losses. No differences were found in the amount of sediment between landscape positions. There was also no relationship between sediment quantity and herbicide concentration. The herbicides applied in agriculture were moved to the lower parts of the landscape, where they are not applied. Three patterns of distribution of concentrations were found that corresponded to some herbicides and soils properties. The average concentrations of 2.4-D, acetochlor and s-metolachlor were higher in the lowland than in the upland and mid slope. The low/moderate adsorption coefficients, the moderate/high solubilities and their relationship with higher sand content and SOC led to their accumulation in the lowland. On the contrary, the average concentrations of glyphosate and AMPA were higher in the upland and mid slope positions, as a consequence of their high adsorption coefficient in soils with higher clay and silt content. Finally, the average concentrations of atrazine-OH and flurochloridone did not differ between landscape positions. Its moderate adsorption to the soil, low solubility and lack of relationship with soil properties caused a relatively homogeneous distribution in the landscape. It is necessary to implement crop rotations that improve soil surface properties to increase its retention and degradation and, therefore, decrease the runoff, the herbicides load in runoff and the associated environmental risks.</p>


AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Danish Sharafat Rajput ◽  
Dong Zeng ◽  
Abdul Khalique ◽  
Samia Sharafat Rajput ◽  
Hesong Wang ◽  
...  

AbstractNecrotic enteritis (NE) is being considered as one of the most important intestinal diseases in the recent poultry production systems, which causes huge economic losses globally. NE is caused by Clostridium perfringens, a pathogenic bacterium, and normal resident of the intestinal microflora of healthy broiler chickens. Gastrointestinal tract (GIT) of broiler chicken is considered as the most integral part of pathogen’s entrance, their production and disease prevention. Interaction between C. perfringens and other pathogens such as Escherichia coli and Salmonella present in the small intestine may contribute to the development of NE in broiler chickens. The antibiotic therapy was used to treat the NE; however European Union has imposed a strict ban due to the negative implications of drug resistance. Moreover, antibiotic growth promoters cause adverse effects on human health as results of withdrawal of antibiotic residues in the chicken meat. After restriction on use of antibiotics, numerous studies have been carried out to investigate the alternatives to antibiotics for controlling NE. Thus, possible alternatives to prevent NE are bio-therapeutic agents (Probiotics), prebiotics, organic acids and essential oils which help in nutrients digestion, immunity enhancement and overall broiler performance. Recently, probiotics are extensively used alternatives to antibiotics for improving host health status and making them efficient in production. The aim of review is to describe a replacement to antibiotics by using different microbial strains as probiotics such as bacteria and yeasts etc. having bacteriostatic properties which inhibit growth of pathogens and neutralize the toxins by different modes of action.


2021 ◽  
pp. 101156
Author(s):  
Rim El Jeni ◽  
Dana K. Dittoe ◽  
Elena G. Olson ◽  
Jeferson Lourenco ◽  
Nicolae Corcionivoschi ◽  
...  

2021 ◽  
pp. 101173
Author(s):  
Rim El Jeni ◽  
Dana K. Dittoe ◽  
Elena G. Olson ◽  
Jeferson Lourenco ◽  
Darren S. Seidel ◽  
...  

2012 ◽  
Vol 37 ◽  
pp. 192-201 ◽  
Author(s):  
Cesare Castellini ◽  
Antonio Boggia ◽  
Carla Cortina ◽  
Alessandro Dal Bosco ◽  
Luisa Paolotti ◽  
...  

2006 ◽  
Vol 63 (2) ◽  
pp. 194-209 ◽  
Author(s):  
Francirose Shigaki ◽  
Andrew Sharpley ◽  
Luís Ignácio Prochnow

Eutrophication has become a major threat to water quality in the U.S., Europe, and Australasia. In most cases, freshwater eutrophication is accelerated by increased inputs of phosphorus (P), of which agricultural runoff is now a major contributor, due to intensification of crop and animal production systems since the early 1990s'. Once little information is available on the impacts of Brazilian agriculture in water quality, recent changes in crop and animal production systems in Brazil were evaluated in the context of probable implications of the fate of P in agriculture. Between 1993 and 2003, there was 33% increase in the number of housed animals (i.e., beef, dairy cows, swine, and poultry), most in the South Region (i.e., Paraná, Rio Grande do Sul, and Santa Catarina States), where 43 and 49% of Brazil's swine and poultry production is located, respectively. Although grazing-based beef production is the major animal production system in Brazil, it is an extensive system, where manure is deposited over grazed pastures; confined swine and poultry are intensive systems, producing large amounts of manure in small areas, which can be considered a manageable resource. This discussion will focus on swine and poultry farming. Based on average swine (100 kg) and poultry weights (1.3 kg), daily manure production (4.90 and 0.055 kg per swine and poultry animal unit, respectively), and manure P content (40 and 24 g kg-1 for swine and poultry, respectively), an estimated 2.5 million tones of P in swine and poultry manure were produced in 2003. Mostly in the South and Southeast regions of Brazil (62%), which represent only 18% of the country's land area. In the context of crop P requirements, there was 2.6 times more P produced in manure (1.08 million tones) than applied as fertilizer (0.42 million tonnes) in South Brazil in 2003. If it is assumed that fertilizer P use represents P added to meet crop needs and accounts for P sorbed by soil in unavailable forms each year, if swine and poultry manure were to replace fertilizer, there would be an annual P surplus of 0.66 million tonnes in the South region alone. These approximations and estimates highlight that, similarly to other parts of the world, there is a potential for surplus P to quickly accumulate in certain regions of Brazil. Unless measures are developed and implemented to utilize manure P, repeated annual surpluses will create an increasingly difficult problem to solve. These measures can be grouped as source and transport management. Source management attempts to decrease dietary P, use feed additives, manure treatment and composting, as well as careful management of the rate, timing, and method of manure applications. Transport management attempts to control the loss of P in runoff from soil to sensitive waters via use of conservation tillage, buffer or riparian zones, cover crops, and trapping ponds or wetlands. These measures are discussed in the contest of Brazil's climate, topography, and land use, and how successful remediation programs may be implemented at farm and watershed level.


Sign in / Sign up

Export Citation Format

Share Document