scholarly journals Fate of Tebuconazole in Polish Mineral Soils – Results of Simulations with FOCUS PELMO

2021 ◽  
Vol 22 (11) ◽  
pp. 131-141
Author(s):  
Marcin Siek ◽  
Tadeusz Paszko
Keyword(s):  
1959 ◽  
Vol 23 (2) ◽  
pp. 127-130 ◽  
Author(s):  
W. L. Pritchett ◽  
C. F. Eno ◽  
M. N. Malik

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Noabur Rahman ◽  
Jeff Schoenau

Abstract A polyhouse study was conducted to evaluate the relative effectiveness of different micronutrient fertilizer formulation and application methods on wheat, pea and canola, as indicated by yield response and fate of micronutrients in contrasting mineral soils. The underlying factors controlling micronutrient bioavailability in a soil–plant system were examined using chemical and spectroscopic speciation techniques. Application of Cu significantly improved grain and straw biomass yields of wheat on two of the five soils (Ukalta and Sceptre), of which the Ukalta soil was critically Cu deficient according to soil extraction with DTPA. The deficiency problem was corrected by either soil or foliar application of Cu fertilizers. There were no significant yield responses of pea to Zn fertilization on any of the five soils. For canola, soil placement of boric acid was effective in correcting the deficiency problem in Whitefox soil, while foliar application was not. Soil extractable Cu, Zn, and B concentration in post-harvest soils were increased with soil placement of fertilizers, indicating that following crops in rotation could benefit from this application method. The chemical and XANES spectroscopic speciation indicates that carbonate associated is the dominant form of Cu and Zn in prairie soils, where chemisorption to carbonates is likely the major process that determines the fate of added Cu and Zn fertilizer.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Geert Hensgens ◽  
Hjalmar Laudon ◽  
Mark S. Johnson ◽  
Martin Berggren

AbstractThe boreal forest is among the largest terrestrial biomes on earth, storing more carbon (C) than the atmosphere. Due to rapid climatic warming and enhanced human development, the boreal region may have begun transitioning from a net C sink to a net source. This raises serious concern that old biogenic soil C can be re-introduced into the modern C cycle in near future. Combining bio-decay experiments, mixing models and the Keeling plot method, we discovered a distinct old pre-bomb organic carbon fraction with high biodegradation rate. In total, 34 ± 12% of water-extractable organic carbon (WEOC) in podzols, one of the dominating boreal soil types, consisted of aged (~ 1000 year) labile C. The omission of this aged (i.e., Δ14C depleted) WEOC fraction in earlier studies is due to the co-occurrence with Δ14C enriched modern C formed following 1950s nuclear bomb testing masking its existence. High lability of aged soil WEOC and masking effects of modern Δ14C enriched C suggests that the risk for mobilization and re-introduction of this ancient C pool into the modern C cycle has gone undetected. Our findings have important implications for earth systems models in terms of climate-carbon feedbacks and the future C balance of the boreal forest.


Forests ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 28
Author(s):  
Linda Čakša ◽  
Silva Šēnhofa ◽  
Guntars Šņepsts ◽  
Didzis Elferts ◽  
Līga Liepa ◽  
...  

Post-disturbance salvage logging mitigates economic loss after windthrow, and the value of salvaged timber is strongly linked to its quality and dimensions. We studied the occurrence of wind-induced damage of aspen in the hemiboreal forests of Latvia based on data from the National Forest Inventory and additional measurements. Individual tree data from three re-measurement periods were linked to follow a tree condition (live, broken, uprooted) and to link tree characteristics to a respective snag. Three linear models were developed to assess factors affecting the snapping height. An assortment outcome was calculated for undamaged and salvaged trees using the bucking algorithm, and timber value was calculated at three price levels. Wind-induced damage occurred for 3.4–3.6% of aspen trees, and among these, 45.8–46.6% were broken. The mean height of the broken trees was 27.3 ± 0.9 m, and it was significantly higher (both p < 0.01) compared to the height of undamaged and uprooted trees. The tested models indicated tree height as the main explanatory variable for relative snapping height, with higher trees having a lower point of the stem breakage. The other significant factor was the forest type group, indicating that trees growing on dry mineral soils had lower relative snapping height than trees growing on drained mineral soils. Stem breakage significantly (p < 0.001) reduced the volume of assortments, as compared to the volume of undamaged trees. Relative volume loss of sawlogs showed a logarithmic trend with a steep increase up to snapping height of 6 m, and it correlated tightly (r = 0.83, p < 0.001) with relative value loss of the total stem. Timber value loss had a strong, positive relation to tree diameter at breast height and fluctuated by 0.4% among different price levels. The mean volume reduction was 37.7% for sawlogs, 11.0% for pallet blocks, and 8.9% for technological wood.


Sign in / Sign up

Export Citation Format

Share Document