scholarly journals Classification using semantic feature and machine learning: Land-use case application

Author(s):  
Hela Elmannai ◽  
Abeer Dhafer AlGarni
2021 ◽  
Vol 27 ◽  
pp. 1239-1254
Author(s):  
Hong Anh Thi Nguyen ◽  
Tip Sophea ◽  
Shabbir H. Gheewala ◽  
Rawee Rattanakom ◽  
Thanita Areerob ◽  
...  

2021 ◽  
Vol 125 ◽  
pp. 107608
Author(s):  
Ziguan Wang ◽  
Guangcai Wang ◽  
Tingyu Ren ◽  
Haibo Wang ◽  
Qingyu Xu ◽  
...  

2021 ◽  
Vol 13 (5) ◽  
pp. 974
Author(s):  
Lorena Alves Santos ◽  
Karine Ferreira ◽  
Michelle Picoli ◽  
Gilberto Camara ◽  
Raul Zurita-Milla ◽  
...  

The use of satellite image time series analysis and machine learning methods brings new opportunities and challenges for land use and cover changes (LUCC) mapping over large areas. One of these challenges is the need for samples that properly represent the high variability of land used and cover classes over large areas to train supervised machine learning methods and to produce accurate LUCC maps. This paper addresses this challenge and presents a method to identify spatiotemporal patterns in land use and cover samples to infer subclasses through the phenological and spectral information provided by satellite image time series. The proposed method uses self-organizing maps (SOMs) to reduce the data dimensionality creating primary clusters. From these primary clusters, it uses hierarchical clustering to create subclusters that recognize intra-class variability intrinsic to different regions and periods, mainly in large areas and multiple years. To show how the method works, we use MODIS image time series associated to samples of cropland and pasture classes over the Cerrado biome in Brazil. The results prove that the proposed method is suitable for identifying spatiotemporal patterns in land use and cover samples that can be used to infer subclasses, mainly for crop-types.


Author(s):  
Julien Siebert ◽  
Lisa Joeckel ◽  
Jens Heidrich ◽  
Adam Trendowicz ◽  
Koji Nakamichi ◽  
...  

AbstractNowadays, systems containing components based on machine learning (ML) methods are becoming more widespread. In order to ensure the intended behavior of a software system, there are standards that define necessary qualities of the system and its components (such as ISO/IEC 25010). Due to the different nature of ML, we have to re-interpret existing qualities for ML systems or add new ones (such as trustworthiness). We have to be very precise about which quality property is relevant for which entity of interest (such as completeness of training data or correctness of trained model), and how to objectively evaluate adherence to quality requirements. In this article, we present how to systematically construct quality models for ML systems based on an industrial use case. This quality model enables practitioners to specify and assess qualities for ML systems objectively. In addition to the overall construction process described, the main outcomes include a meta-model for specifying quality models for ML systems, reference elements regarding relevant views, entities, quality properties, and measures for ML systems based on existing research, an example instantiation of a quality model for a concrete industrial use case, and lessons learned from applying the construction process. We found that it is crucial to follow a systematic process in order to come up with measurable quality properties that can be evaluated in practice. In the future, we want to learn how the term quality differs between different types of ML systems and come up with reference quality models for evaluating qualities of ML systems.


2018 ◽  
Vol 8 (1) ◽  
pp. 16 ◽  
Author(s):  
Irina Matijosaitiene ◽  
Peng Zhao ◽  
Sylvain Jaume ◽  
Joseph Gilkey Jr

Predicting the exact urban places where crime is most likely to occur is one of the greatest interests for Police Departments. Therefore, the goal of the research presented in this paper is to identify specific urban areas where a crime could happen in Manhattan, NY for every hour of a day. The outputs from this research are the following: (i) predicted land uses that generates the top three most committed crimes in Manhattan, by using machine learning (random forest and logistic regression), (ii) identifying the exact hours when most of the assaults are committed, together with hot spots during these hours, by applying time series and hot spot analysis, (iii) built hourly prediction models for assaults based on the land use, by deploying logistic regression. Assault, as a physical attack on someone, according to criminal law, is identified as the third most committed crime in Manhattan. Land use (residential, commercial, recreational, mixed use etc.) is assigned to every area or lot in Manhattan, determining the actual use or activities within each particular lot. While plotting assaults on the map for every hour, this investigation has identified that the hot spots where assaults occur were ‘moving’ and not confined to specific lots within Manhattan. This raises a number of questions: Why are hot spots of assaults not static in an urban environment? What makes them ‘move’—is it a particular urban pattern? Is the ‘movement’ of hot spots related to human activities during the day and night? Answering these questions helps to build the initial frame for assault prediction within every hour of a day. Knowing a specific land use vulnerability to assault during each exact hour can assist the police departments to allocate forces during those hours in risky areas. For the analysis, the study is using two datasets: a crime dataset with geographical locations of crime, date and time, and a geographic dataset about land uses with land use codes for every lot, each obtained from open databases. The study joins two datasets based on the spatial location and classifies data into 24 classes, based on the time range when the assault occurred. Machine learning methods reveal the effect of land uses on larceny, harassment and assault, the three most committed crimes in Manhattan. Finally, logistic regression provides hourly prediction models and unveils the type of land use where assaults could occur during each hour for both day and night.


Author(s):  
Gezahegn Weldu Woldemariam ◽  
Degefie Tibebe ◽  
Tesfamariam Engida Mengesha ◽  
Tadele Bedo Gelete

Sign in / Sign up

Export Citation Format

Share Document