scholarly journals Physical Properties of High Density Polyethylene by High Shear Stress

1971 ◽  
Vol 28 (319) ◽  
pp. 864-868,938 ◽  
Author(s):  
Youichi Kinoshita ◽  
Hirakazu Nakamura ◽  
Makoto Takakura ◽  
Haruo Morimoto ◽  
Takao Kasuga ◽  
...  
2021 ◽  
Vol 36 (5) ◽  
pp. 557-563
Author(s):  
A. G. Toroslu

Abstract Recycling of plastic materials has become more environmentally important than recycling of other materials. The most important problem during recycling is the presence of oil, dirt, dust and metal particles that are mixed with plastic materials. These mixtures can change their its mechanical and physical properties and it is quite costly to remove them completely. Removing iron alloy particles from plastic is possible by using the magnetic method. However, removing non-metallic materials requires extra processing. In this study, the use of recycled High-Density Polyethylene (rHDPE) without an expensive cleaning processes has been investigated. Different amounts of aluminium oxide (Al2O3) were added to High Density Polyethylene (HDPE) to simulate the effect of non-metallic material involved. The effect of these contamination rates on the mechanical and physical properties of HDPE was examined in detail. For this purpose, recyclable materials were produced by mixing rHDPE with 1%, to 7% Al2O3 . The results show that up to 7% of the mixture has acceptable effects on the properties of HDPE. When the results of the experiments are examined, it is observed that there is a 3.74% change in the elastic modulus of the material. This means, that up to 7% non-metal contaminated rHDPE material can be used without any costly recycling process.


2018 ◽  
Vol 39 (suppl_1) ◽  
Author(s):  
H Spillemaeker ◽  
A Dupont ◽  
A Kauskot ◽  
A Rauch ◽  
F Vincent ◽  
...  

Hypertension ◽  
2005 ◽  
Vol 45 (4) ◽  
pp. 672-680 ◽  
Author(s):  
Branko Braam ◽  
Remmert de Roos ◽  
Hans Bluyssen ◽  
Patrick Kemmeren ◽  
Frank Holstege ◽  
...  

1987 ◽  
Vol 23 (9) ◽  
pp. 729-732 ◽  
Author(s):  
Alfonso J. Chirinos Padrón ◽  
Zimbul Rubinztain ◽  
Maria A. Colmenares

Fractals ◽  
1999 ◽  
Vol 07 (01) ◽  
pp. 33-39 ◽  
Author(s):  
VINCENT FLEURY ◽  
LAURENT SCHWARTZ

A model is proposed by which the formation of the vascular network in animals proceeds via progressive penetration of the vessel ramification into a capillary mesh, by means of a laplacian growth mechanism of hydrodynamical origin. In this model, the growth of both arteries and veins follows the directions of high shear stress provoked by the blood flow on the endothelial wall of a pre-existing capillary mesh. This process is shown to be identical to the phenomenon of dendritic growth, which is responsible for the formation of such well-known patterns as dendritic crystals, lightning sparks or branching aggregates of bacteria. A number of straightforward consequences of potentially important medical and physiological interests are deduced. These include the natural and spontaneous organization of the arterial and venal trees, the spontaneous and unavoidable tropism of arteries towards veins and vice-versa, the hierarchical character of the vessels and the possibility of computerized prediction of the vascular pattern from the shape of the capillary bed.


2019 ◽  
Vol 20 (20) ◽  
pp. 5040 ◽  
Author(s):  
Thien Ngo ◽  
Keunyoung Kim ◽  
Yiying Bian ◽  
Hakjun Noh ◽  
Kyung-Min Lim ◽  
...  

Antiplatelet agents are important in the pharmacotherapeutic regime for many cardiovascular diseases, including thrombotic disorders. However, bleeding, the most serious adverse effect associated with current antiplatelet therapy, has led to many efforts to discover novel anti-platelet drugs without bleeding issues. Of note, shear stress-induced platelet aggregation (SIPA) is a promising target to overcome bleeding since SIPA happens only in pathological conditions. Accordingly, this study was carried out to discover antiplatelet agents selectively targeting SIPA. By screening various herbal extracts, Paeonia suffruticosa and its major bioactive constituent, paeoniflorin, were identified to have significant inhibitory effects against shear-induced aggregation in human platelets. The effects of paeoniflorin on intraplatelet calcium levels, platelet degranulation, and integrin activation in high shear stress conditions were evaluated by a range of in vitro experiments using human platelets. The inhibitory effect of paeoniflorin was determined to be highly selective against SIPA, through modulating von Willebrand Factor (vWF)-platelet glycoprotein Ib (GP Ib) interaction. The effects of paeoniflorin on platelet functions under high shear stress were confirmed in the ex vivo SIPA models in rats, showing the good accordance with the anti-SIPA effects on human platelets. Treatment with paeoniflorin significantly prevented arterial thrombosis in vivo from the dose of 10 mg/kg without prolonging bleeding time or blood clotting time in rats. Collectively, our results demonstrated that paeoniflorin can be a novel anti-platelet agent selectively targeting SIPA with an improved safety profile.


2016 ◽  
Vol 67 (2) ◽  
pp. 213 ◽  
Author(s):  
Toru Kubo ◽  
Hiroaki Kitaoka

Sign in / Sign up

Export Citation Format

Share Document