scholarly journals INFLUENCE OF AGE AND GENDER ON THE STRENGTH OF BLOOD VESSELS

2016 ◽  
Vol 4 ◽  
pp. 719-726
Author(s):  
Zyta Kuzborska

This article examines the effects of cardiovascular diseases that alter the diameter, wall thickness, and length of blood vessels. Depending on form and size of the damage, blood flow velocity, blood pressure, and stresses are affected in areas of diseased blood vessels. Through stimulating the deviations in the geometric shape of a blood-vessel wall, local blood pressure and stresses can arise from flow variation of blood vessels. This rise affects the blood-vessel wall and causes critical stresses likely to produce fissures in the blood vessels. It was found, that blood vessel pathology could cause blood flow velocity to increase up to 2.2 times and local blood pressure up to 3.4 times, and that human aging may have a significant influence on blood-vessel strength.

Author(s):  
Jingliang Miao ◽  
Haixiang Liu

Abstract This paper proposes and analyzes a simple dynamic model of blood vessel wall. By studying the coupled vibration of blood flow and vessel wall, one can get the natural frequency of a blood vessel. The method used here is generalized calculus of variations. The results show that the flexibility of blood vessels has a greater influence on the fundamental frequency of the coupled vibration and the viscosity of blood vessel has little effect on the frequency of the coupled vibration but has a greater effect on the amplitude of the vibration. Therefore it is important to control both the viscosity and flexibility of blood vessels.


2016 ◽  
Vol 08 (05) ◽  
pp. 1650065 ◽  
Author(s):  
M. Hosseini ◽  
M. A. Paparisabet

When blood flows in vessel curved portion, the presence of curvature generates a centrifugal force that acts in the same manner as a compressive load. Therefore, blood flow velocity has an important effect on the stability of vessels. In this study, the blood vessel is simulated as a flexible beam conveying fluid base on Euler–Bernoulli beam theory, and various boundary conditions are represented for the modeled vessels. Then, analytical and numerical methods are deployed to extract desired parameters. The effects of blood flow, hematocrit and stiffness of surrounding tissues on the buckling critical pressure are investigated. The results show that the mentioned parameters have considerable effects on blood vessels stability. Several numerical findings illustrate a reduction in critical buckling pressure with increasing hematocrit and blood flow velocity. In addition, the size of red blood cell has a significant effect on critical buckling pressure in low hematocrits. As increasing red blood cell diameter decreases critical buckling pressure. Furthermore, because of blood viscosity, the non-uniformity effects of the blood flow on blood vessels stability are investigated by considering a modification factor. These results improve our understanding of blood vessels instability.


2018 ◽  
Vol 6 (9) ◽  
Author(s):  
DR.MATHEW GEORGE ◽  
DR.LINCY JOSEPH ◽  
MRS.DEEPTHI MATHEW ◽  
ALISHA MARIA SHAJI ◽  
BIJI JOSEPH ◽  
...  

Blood pressure is the force of blood pushing against blood vessel walls as the heart pumps out blood, and high blood pressure, also called hypertension, is an increase in the amount of force that blood places on blood vessels as it moves through the body. Factors that can increase this force include higher blood volume due to extra fluid in the blood and blood vessels that are narrow, stiff, or clogged(1). High blood pressure can damage blood vessels in the kidneys, reducing their ability to work properly. When the force of blood flow is high, blood vessels stretch so blood flows more easily. Eventually, this stretching scars and weakens blood vessels throughout the body, including those in the kidneys.


2010 ◽  
Vol 299 (1) ◽  
pp. R55-R61 ◽  
Author(s):  
N. C. S. Lewis ◽  
G. Atkinson ◽  
S. J. E. Lucas ◽  
E. J. M. Grant ◽  
H. Jones ◽  
...  

Epidemiological data indicate that the risk of neurally mediated syncope is substantially higher in the morning. Syncope is precipitated by cerebral hypoperfusion, yet no chronobiological experiment has been undertaken to examine whether the major circulatory factors, which influence perfusion, show diurnal variation during a controlled orthostatic challenge. Therefore, we examined the diurnal variation in orthostatic tolerance and circulatory function measured at baseline and at presyncope. In a repeated-measures experiment, conducted at 0600 and 1600, 17 normotensive volunteers, aged 26 ± 4 yr (mean ± SD), rested supine at baseline and then underwent a 60° head-up tilt with 5-min incremental stages of lower body negative pressure until standardized symptoms of presyncope were apparent. Pretest hydration status was similar at both times of day. Continuous beat-to-beat measurements of cerebral blood flow velocity, blood pressure, heart rate, stroke volume, cardiac output, and end-tidal Pco2 were obtained. At baseline, mean cerebral blood flow velocity was 9 ± 2 cm/s (15%) lower in the morning than the afternoon ( P < 0.0001). The mean time to presyncope was shorter in the morning than in the afternoon (27.2 ± 10.5 min vs. 33.1 ± 7.9 min; 95% CI: 0.4 to 11.4 min, P = 0.01). All measurements made at presyncope did not show diurnal variation ( P > 0.05), but the changes over time (from baseline to presyncope time) in arterial blood pressure, estimated peripheral vascular resistance, and α-index baroreflex sensitivity were greater during the morning tests ( P < 0.05). These data indicate that tolerance to an incremental orthostatic challenge is markedly reduced in the morning due to diurnal variations in the time-based decline in blood pressure and the initial cerebral blood flow velocity “reserve” rather than the circulatory status at eventual presyncope. Such information may be used to help identify individuals who are particularly prone to orthostatic intolerance in the morning.


1999 ◽  
Vol 91 (3) ◽  
pp. 677-677 ◽  
Author(s):  
Basil F. Matta ◽  
Karen J. Heath ◽  
Kate Tipping ◽  
Andrew C. Summors

Background The effect of volatile anesthetics on cerebral blood flow depends on the balance between the indirect vasoconstrictive action secondary to flow-metabolism coupling and the agent's intrinsic vasodilatory action. This study compared the direct cerebral vasodilatory actions of 0.5 and 1.5 minimum alveolar concentration (MAC) sevoflurane and isoflurane during an propofol-induced isoelectric electroencephalogram. Methods Twenty patients aged 20-62 yr with American Society of Anesthesiologists physical status I or II requiring general anesthesia for routine spinal surgery were recruited. In addition to routine monitoring, a transcranial Doppler ultrasound was used to measure blood flow velocity in the middle cerebral artery, and an electroencephalograph to measure brain electrical activity. Anesthesia was induced with propofol 2.5 mg/kg, fentanyl 2 micro/g/kg, and atracurium 0.5 mg/kg, and a propofol infusion was used to achieve electroencephalographic isoelectricity. End-tidal carbon dioxide, blood pressure, and temperature were maintained constant throughout the study period. Cerebral blood flow velocity, mean blood pressure, and heart rate were recorded after 20 min of isoelectric encephalogram. Patients were then assigned to receive either age-adjusted 0.5 MAC (0.8-1%) or 1.5 MAC (2.4-3%) end-tidal sevoflurane; or age-adjusted 0.5 MAC (0.5-0.7%) or 1.5 MAC (1.5-2%) end-tidal isoflurane. After 15 min of unchanged end-tidal concentration, the variables were measured again. The concentration of the inhalational agent was increased or decreased as appropriate, and all measurements were repeated again. All measurements were performed before the start of surgery. An infusion of 0.01% phenylephrine was used as necessary to maintain mean arterial pressure at baseline levels. Results Although both agents increased blood flow velocity in the middle cerebral artery at 0.5 and 1.5 MAC, this increase was significantly less during sevoflurane anesthesia (4+/-3 and 17+/-3% at 0.5 and 1.5 MAC sevoflurane; 19+/-3 and 72+/-9% at 0.5 and 1.5 MAC isoflurane [mean +/- SD]; P&lt;0.05). All patients required phenylephrine (100-300 microg) to maintain mean arterial pressure within 20% of baseline during 1.5 MAC anesthesia. Conclusions In common with other volatile anesthetic agents, sevoflurane has an intrinsic dose-dependent cerebral vasodilatory effect. However, this effect is less than that of isoflurane.


PEDIATRICS ◽  
1984 ◽  
Vol 73 (5) ◽  
pp. 737-737
Author(s):  
JEFFREY M. PERLMAN ◽  
JOSEPH J. VOLPE

In Reply.— Marshall misread a critical piece of information in the text. His interpretation of the data would be correct, if the intracranial pressure, arterial blood pressure, and cerebral blood flow velocity changes occurred simultaneously. However, as we stated in the text (see section on "Temporal Features of Changes with Suctioning"), the intracranial pressure fell to base-line values immediately following suctioning, whereas the changes in arterial blood pressure and cerebral blood flow velocity occurred more slowly over an approximately two-minute period.


2001 ◽  
Vol 280 (5) ◽  
pp. H2162-H2174 ◽  
Author(s):  
Ronney B. Panerai ◽  
Suzanne L. Dawson ◽  
Penelope J. Eames ◽  
John F. Potter

The influence of different types of maneuvers that can induce sudden changes of arterial blood pressure (ABP) on the cerebral blood flow velocity (CBFV) response was studied in 56 normal subjects (mean age 62 yr, range 23–80). ABP was recorded in the finger with a Finapres device, and bilateral recordings of CBFV were performed with Doppler ultrasound of the middle cerebral arteries. Recordings were performed at rest (baseline) and during the thigh cuff test, lower body negative pressure, cold pressor test, hand grip, and Valsalva maneuver. From baseline recordings, positive and negative spontaneous transients were also selected. Stability of Pco 2 was monitored with transcutaneous measurements. Dynamic autoregulatory index (ARI), impulse, and step responses were obtained for 1-min segments of data for the eight conditions by fitting a mathematical model to the ABP-CBFV baseline and transient data (Aaslid's model) and by the Wiener-Laguerre moving-average method. Impulse responses were similar for the right- and left-side recordings, and their temporal pattern was not influenced by type of maneuver. Step responses showed a sudden rise at time 0 and then started to fall back to their original level, indicating an active autoregulation. ARI was also independent of the type of maneuver, giving an overall mean of 4.7 ± 2.9 ( n = 602 recordings). Amplitudes of the impulse and step responses, however, were significantly influenced by type of maneuver and were highly correlated with the resistance-area product before the sudden change in ABP ( r = −0.93, P < 0.0004). These results suggest that amplitude of the CBFV step response is sensitive to the point of operation of the instantaneous ABP-CBFV relationship, which can be shifted by different maneuvers. Various degrees of sympathetic nervous system activation resulting from different ABP-stimulating maneuvers were not reflected by CBFV dynamic autoregulatory responses within the physiological range of ABP.


Sign in / Sign up

Export Citation Format

Share Document