scholarly journals Computational Fluid Dynamics (CFD) Simulation of Sand Particle Erosion in Turbulent Gas Fluid Flow in Vertical-Horizontal Elbow

2018 ◽  
Vol 7 (2) ◽  
Author(s):  
Ido Widya Yudhatama ◽  
Mas Irfan Purbawanto ◽  
Wikan Jatimurti
2003 ◽  
Vol 125 (12) ◽  
pp. 35-37
Author(s):  
Jean Thilmany

This article reviews the method of analyzing fluid flow in structures and designs, which is enjoying a burst of interest. Twenty years later, manufacturers across a myriad of industries are licensing the technology from a pool of vendors who now market computational fluid dynamics (CFD) packages of many stripes. Engineers use CFD to predict how fluids will flow and to predict the quantitative effects of the fluid on the solids with which they are in contact. Airflow is commonly studied with the software. Many mechanical engineers do not need access to all the bells and whistles an advanced CFD program can provide. Advanced analysis programs are usually the purview of a user trained on a particular CFD package. Engineers used CFD to determine how to best position the fans so that air flowed inside the refrigerator and the freezer in the most efficient way. After studying fluid flow simulations, they made prototypes of the most promising modeled designs to see if the prototypes matched CFD simulation results.


2012 ◽  
Vol 557-559 ◽  
pp. 2249-2252 ◽  
Author(s):  
Song Lin Xu ◽  
Wen Qiang Mi

A computational fluid dynamics (CFD) model was used to simulate unsteady fluid flow in a two-dimensional channel. The flow was computed for several different geometries and velocity. Calculations show different flow patterns of the cavity spacer, the submerged spacer and the zigzag spacer. Applications of two-dimensional CFD simulation give a visual method to determine the advantages of each spacer type.


Author(s):  
S N A Ahmad Termizi ◽  
C Y Khor ◽  
M A M Nawi ◽  
Nurlela Ahmad ◽  
Muhammad Ikman Ishak ◽  
...  

2013 ◽  
Vol 368-370 ◽  
pp. 599-602 ◽  
Author(s):  
Ian Hung ◽  
Hsien Te Lin ◽  
Yu Chung Wang

This study focuses on the performance of air conditioning design at the Dazhi Cultural Center and uses a computational fluid dynamics (CFD) simulation to discuss the differences in wind velocity and ambient indoor temperature between all-zone air conditioning design and stratified air conditioning design. The results have strong implications for air conditioning design and can improve the indoor air quality of assembly halls.


2014 ◽  
Vol 11 (6) ◽  
Author(s):  
Paolo Sala ◽  
Paola Gallo Stampino ◽  
Giovanni Dotelli

This work is part of a project whose final aim is the realization of an auxiliary power fuel cell generator. It was necessary to design and develop bipolar plates that would be suitable for this application. Bipolar plates have a relevant influence on the final performances of the entire device. A gas leakage or a bad management of the water produced during the reaction could be determinant during operations and would cause the failure of the stack. The development of the bipolar plates was performed in different steps. First, the necessity to make an esteem of the dynamics that happen inside the feeding channels led to perform analytical calculations. The values found were cross-checked performing a computational fluid dynamics (CFD) simulation; finally, it was defined the best pattern for the feeding channels, so that to enhance mass transport and achieve the best velocity profile. The bipolar plates designed were machined and assembled in a laboratory scale two cells prototype stack. Influences of the temperature and of the humidity were evaluated performing experiments at 60 deg and 70 deg and between 60% and 100% of humidity of the reactant gasses. The best operating point achieved in one of these conditions was improved by modifying the flow rates of the reactant, in order to obtain the highest output power, and it evaluated the reliability of the plates in experiments performed for longer times, at fixed voltages.


Sign in / Sign up

Export Citation Format

Share Document