scholarly journals History Matching of Gas Production Rates Integrated an Artificial Neural Network with Distance-based Candidate Selection

Author(s):  
Jaejun Kim ◽  
Joe M. Kang ◽  
Changhyup Park ◽  
Seongin Ahn ◽  
Baehyun Min
Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5886
Author(s):  
Jiwon Park ◽  
Jungkeun Cho ◽  
Heewon Choi ◽  
Jungsoo Park

Facing the reinforced emission regulations and moving toward a clean powertrain, hydrogen has become one of the alternative fuels for the internal combustion engine. In this study, the prediction methodology of hydrogen yield by on-board fuel reforming under a diesel engine is introduced. An engine dynamometer test was performed, resulting in reduced particulate matter (PM) and NOx emission with an on-board reformer. Based on test results, the reformed gas production rate from the on-board reformer was trained and predicted using an artificial neural network with a backpropagation process at various operating conditions. Additional test points were used to verify predicted results, and sensitivity analysis was performed to obtain dominant parameters. As a result, the temperature at the reformer outlet and oxygen concentration is the most dominant parameters to predict reformed gas owing to auto-thermal reforming driven by partial oxidation reforming process, dominantly.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Osama Siddig ◽  
Ahmed Abdulhamid Mahmoud ◽  
Salaheldin Elkatatny ◽  
Pantelis Soupios

Due to high oil and gas production and consumption, unconventional reservoirs attracted significant interest. Total organic carbon (TOC) is a significant measure of the quality of unconventional resources. Conventionally, TOC is measured experimentally; however, continuous information about TOC is hard to obtain due to the samples’ limitations, while the developed empirical correlations for TOC were found to have modest accuracy when applied in different datasets. In this paper, data from Devonian Duvernay shale were used to develop an optimized empirical correlation to predict TOC based on an artificial neural network (ANN). Three wells’ datasets were used to build and validate the model containing over 1250 data points, and each data point includes values for TOC, density, porosity, resistivity, gamma ray and sonic transient time, and spectral gamma ray. The three datasets were used separately for training, testing, and validation. The results of the developed correlation were compared with three available models. A sensitivity and optimization test was performed to reach the best model in terms of average absolute percentage error (AAPE) and correlation coefficient (R) between the actual and predicted TOC. The new correlation yielded an excellent match with the actual TOC values with R values above 0.93 and AAPE values lower than 14%. In the validation dataset, the correlation outperformed the other empirical correlations and resulted in less than 10% AAPE, in comparison with over 20% AAPE in other models. These results imply the applicability of this correlation; therefore, all the correlation’s parameters are reported to allow its use on different datasets.


2020 ◽  
Vol 85 (11) ◽  
pp. 1417-1427
Author(s):  
Olja Sovljanski ◽  
Ana Tomic ◽  
Lato Pezo ◽  
Aleksandra Ranitovic ◽  
Sinisa Markov

In the past decades, the bioremediation process based on denitrification by aerobic heterotrophic bacteria was extensively studied for different engineering approaches. Besides the fact that only non-pathogenic and non-biofilm forming bacteria must be used, it is very important to isolate bacteria or a group of bacteria in nature with the capacity to remove completely nitrate without accumulation of nitrogen oxides or ammonia as intermediates. In this article, the denitrification capacity of 43 bacterial strains isolated from slightly alkaline and calcite soils along the Danube River were investigated by artificial neural network (ANN) modelling. According to the obtained results, an ANN model was developed for the prediction of denitrification capacity of bacterial soil strains based on six signification denitrification indicators: biomass and N2 gas production, nitrate and nitrite concentration as well as nitrite and ammonia formation. The ANN model showed a reasonably good predictive capability of the outputs (overall R2 for prediction was 0.958). In addition, the experimental verification of the ANN in laboratory testing indicated that the ANN could predict the denitrification capacity of soil bacteria during the denitrification process in laboratory conditions.


Sign in / Sign up

Export Citation Format

Share Document