scholarly journals HRM species identification of bone samples collected from snake feces

2021 ◽  
Vol 20 (1) ◽  
pp. 41-48
Author(s):  
Anocha Poommouang ◽  
◽  
Piyamat Kongtueng ◽  
Raksiri Nomsiri ◽  
◽  
...  

Species identification is essential and necessary in the forensic sciences. This case study aims to identify animal species using unidentified bone samples found in snake feces with the use of inter-simple sequence repeat markers coupled with high resolution melting analysis (ISSR-HRM). In this case study, six ISSR primers were used and compared with lemur blood. The results of this study indicate that the derivative melting curve established from two bones and the lemur blood sample displayed a similar melting temperature. Additionally, D-loop sequencing of the bones and blood samples were checked against the GenBank database. We found that the samples belonged to a black-and-white ruffed lemur (Varecia variegata) with percent identity values of 99.54 and 99.85, respectively. Thus, ISSR-HRM has been effectively used for species identification, particularly when results can be compared with the target species.

2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110261
Author(s):  
Wannapimol Kriangwanich ◽  
Korakot Nganvongpanit ◽  
Kittisak Buddhachat ◽  
Puntita Siengdee ◽  
Siriwadee Chomdej ◽  
...  

Wildlife trading and the illegal hunting of wildlife are contributing factors to the biodiversity crisis that is presently unfolding across the world. The inability to control the trade of animal body parts or available biological materials is a major challenge for those who investigate wildlife crime. The effective management of this illegal trade is an important facet of wildlife forensic sciences and can be a key factor in the enforcement of effective legislation surrounding the illegal trade of protected and endangered species. However, the science of wildlife forensics is limited by the absence of a comprehensive database for wildlife investigations. Inter-simple sequence repeat markers (ISSR) coupled with high resolution melting analysis (HRM) have been effectively used for species identification of 38 mammalian species. Six primers of the ISSR markers were chosen for species identification analysis. From six ISSR primers resulting in a range of accuracy of 33.3%–100% and 100% in terms of precision in every primer. Furthermore, 161 mammalian samples were 100% distinguished to the correct species using these six ISSR primers. ISSR-HRM analysis was successfully employed in determining mammal identification among varying mammalian species, and thus could serve as an effective alternative tool or technique in the species identification process. This option would offer researchers a heightened level of convenience in terms of its performance and the ease with which researchers or field practice veterinarians would be able to interpret results in effectively identifying animal parts at wildlife investigation crime scenes.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10215
Author(s):  
Wannapimol Kriangwanich ◽  
Korakot Nganvongpanit ◽  
Kittisak Buddhachat ◽  
Puntita Siengdee ◽  
Siriwadee Chomdej ◽  
...  

The identification of differing physical characteristics of dogs is an uncomplicated and straightforward way to categorize dog breeds. However, many dog owners and veterinarians still struggle to distinguish between pure breed and mixed variations in certain breeds of dogs. Presently, the absence of the tools and methods needed to confirm a pure breed dog is a significant problem since the only method available to validate pure or mongrel breeds is the official pedigree system. Inter-simple sequence repeat markers have been successfully used to assess genetic variations and differentiations. Notably, inter-simple sequence repeat markers coupled with high resolution melting analysis were effectively used for the breed identification of 43 breeds of dogs (total 463 dogs). The 10 primers chosen for analysis resulted in a range of 31–78.6% of breed discrimination when using one primer, while a combination of two primers was able to successfully discriminate between all of the 43 dog breeds (100%). Shannon’s index information (I = 2.586 ± 0.034) and expected heterozygosity (He = 0.908 ± 0.003) indicated a high level of genetic diversity among breeds. The fixation index (Fst) revealed a value of 10.4%, demonstrating that there was a high level of genetic subdivision between populations. This study showed that inter-simple sequence repeat marker analysis was effective in demonstrating high genetic diversity among varying breeds of dogs, while a combination of Inter-simple sequence repeat marker analysis and high resolution melting analysis could provide an optional technique for researchers to effectively identify breeds through genetic variations.


2019 ◽  
Vol 51 (5) ◽  
Author(s):  
Huifang Cao ◽  
Qiang Lin ◽  
Peiwang Li ◽  
Jingzhen Chen ◽  
Changzhu Li ◽  
...  

2006 ◽  
Vol 84 (4) ◽  
pp. 359-362 ◽  
Author(s):  
Zhiping Song ◽  
Yun Guan ◽  
Jun Rong ◽  
Xian Xu ◽  
Bao-Rong Lu

2009 ◽  
Vol 32 (1) ◽  
pp. 142-146 ◽  
Author(s):  
Hai Ming Shi ◽  
Jing Wang ◽  
Meng Yue Wang ◽  
Peng Fei Tu ◽  
Xiao Bo Li

2021 ◽  
Author(s):  
Lalit Arya ◽  
Ramya Kossery Narayanan ◽  
Anjali Kak ◽  
Chitra Devi Pandey ◽  
Manjusha Verma ◽  
...  

Abstract Morinda (Rubiaceae) is considerably recognized for its multiple uses viz. food, medicine, dyes, firewood, tools, oil, bio-sorbent etc. The molecular characterization of such an important plant would be very useful for its multifarious enhanced utilization. In the present study, 31 Morinda genotypes belonging to two different species Morinda citrifolia and Morinda tomentosa collected from different regions of India were investigated using Inter Simple Sequence Repeat (ISSR) markers. Fifteen ISSR primers generated 176 bands with an average of 11.7 bands per primer, of which (90.34%) were polymorphic. The percentage of polymorphic bands, mean Nei’s gene diversity, mean Shannon’s information index in Morinda tomentosa and Morinda citrifolia was [(69.89%, 30.68%); (0.21 ± 0.19, 0.12 ± 0.20); (0.32 ± 0.27 0.17 ± 0.28)] respectively, revealing higher polymorphism and genetic diversity in Morinda tomentosa compared to Morinda citrifolia. Structure, and UPGMA cluster analysis placed the genotypes into well-defined separate clusters belonging to two species Morinda tomentosa and Morinda citrifolia revealing the utility of ISSR markers in species differentiation. Distinct ecotypes within a particular species could also be inferred emphasizing the collection and conservation of Morinda genotypes from different regions, in order to capture the overall diversity of respective species. Further higher diversity of M. tomentosa must be advanced for its utilization in nutraceutical, nutritional and other nonfood purposes.


Sign in / Sign up

Export Citation Format

Share Document