A recombinant inbred line population of tomato and its genetic map constructed based on a solanum lycopersicum x s. pimpinellifolium cross

2015 ◽  
Vol 7 ◽  
pp. 441-471 ◽  
Author(s):  
Majid R. Foolad ◽  
Liping Zhang
PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12504
Author(s):  
Guan Li ◽  
Yichen Cheng ◽  
Man Yin ◽  
Jinyu Yang ◽  
Jiezheng Ying ◽  
...  

Background The panicle is the most important organ in rice, and all the panicle-related traits are correlated with rice grain yield. Understanding the underlying genetic mechanisms controlling panicle development is very important for improving rice production. Methods Nine panicle-related traits including heading date, panicle length, number of primary branches, number of secondary branches, number of grains per panicle, number of panicles per plant, number of filled grains per plant, seed-setting rate, and grain yield per plant were investigated. To map the quantitative trait loci (QTLs) for the nine panicle-related traits, a PCR-based genetic map with 208 markers (including 121 simple sequence repeats and 87 InDels) and a high-density linkage map with 18,194 single nucleotide polymorphism (SNP) markers were both used. Results Using a recombinant inbred line population derived from an indica variety Huanghuazhan and a japonica line Jizi 1560, a total of 110 and 112 QTLs were detected for panicle-related traits by PCR-based genetic map and by high-density linkage map, respectively. Most of the QTLs were clustered on chromosomes 1, 2, 3, 6, and 7 while no QTLs were detected on chromosome 10. Almost all the QTLs with LOD values of more than 5.0 were repeatedly detected, indicating the accuracy of the two methods and the stability of the QTL effects. No genes for panicle-related traits have been previously reported in most of these regions. QTLs found in JD1006–JD1007 and RM1148–RM5556 with high LOD and additive values deserved further research. The results of this study are beneficial for marker-assisted breeding and provide research foundation for further fine-mapping and cloning of these QTLs for panicle-related traits.


Nematology ◽  
2018 ◽  
Vol 20 (6) ◽  
pp. 525-537
Author(s):  
Chunjie Li ◽  
Jialin Wang ◽  
Jia You ◽  
Xinpeng Wang ◽  
Baohui Liu ◽  
...  

Summary A recombinant inbred line population of soybean (Glycine max) was utilised to identify the quantitative trait loci (QTLs) determining the response to infection by two root-knot nematode species, Meloidogyne incognita and M. hapla, in glasshouse assays. QTL analysis detected seven major and four minor QTLs on seven soybean chromosomes ((Chrs) 1, 7, 8, 10, 14, 18, 20) explaining 6-41% phenotypic variance (PVE) for M. incognita root response and nematode reproduction. Three of the major QTLs, on Chrs 7, 10 and 18, were confirmed in previous reports and two major QTLs on Chrs 14 and 20 were detected for the first time. The QTL analysis with M. hapla provides the first report of a major QTL region mapped on Chr 7, explaining 70-82% PVE in M. hapla root response and nematode reproduction. These novel identified QTLs with flanking markers will be helpful in marker-assisted breeding for nematode resistance in soybean.


Sign in / Sign up

Export Citation Format

Share Document