The effect of the leak conductance parameter on the dynamics of a mathematical model of pre-Botzinger complex pacemaker neurons: period-doubling bifurcation and chaotic activity

2021 ◽  
Vol 15 (5) ◽  
pp. 257-266
Author(s):  
Takaaki Shirahata
Author(s):  
Eman Moustafa ◽  
Abdel-Azem Sobaih ◽  
Belal Abozalam ◽  
Amged Sayed A. Mahmoud

AbstractChaotic phenomena are observed in several practical and scientific fields; however, the chaos is harmful to systems as they can lead them to be unstable. Consequently, the purpose of this study is to analyze the bifurcation of permanent magnet direct current (PMDC) motor and develop a controller that can suppress chaotic behavior resulted from parameter variation such as the loading effect. The nonlinear behaviors of PMDC motors were investigated by time-domain waveform, phase portrait, and Floquet theory. By varying the load torque, a period-doubling bifurcation appeared which in turn led to chaotic behavior in the system. So, a fuzzy logic controller and developing the Floquet theory techniques are applied to eliminate the bifurcation and the chaos effects. The controller is used to enhance the performance of the system by getting a faster response without overshoot or oscillation, moreover, tends to reduce the steady-state error while maintaining its stability. The simulation results emphasize that fuzzy control provides better performance than that obtained from the other controller.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Changtong Li ◽  
Sanyi Tang ◽  
Robert A. Cheke

Abstract An expectation for optimal integrated pest management is that the instantaneous numbers of natural enemies released should depend on the densities of both pest and natural enemy in the field. For this, a generalised predator–prey model with nonlinear impulsive control tactics is proposed and its dynamics is investigated. The threshold conditions for the global stability of the pest-free periodic solution are obtained based on the Floquet theorem and analytic methods. Also, the sufficient conditions for permanence are given. Additionally, the problem of finding a nontrivial periodic solution is confirmed by showing the existence of a nontrivial fixed point of the model’s stroboscopic map determined by a time snapshot equal to the common impulsive period. In order to address the effects of nonlinear pulse control on the dynamics and success of pest control, a predator–prey model incorporating the Holling type II functional response function as an example is investigated. Finally, numerical simulations show that the proposed model has very complex dynamical behaviour, including period-doubling bifurcation, chaotic solutions, chaos crisis, period-halving bifurcations and periodic windows. Moreover, there exists an interesting phenomenon whereby period-doubling bifurcation and period-halving bifurcation always coexist when nonlinear impulsive controls are adopted, which makes the dynamical behaviour of the model more complicated, resulting in difficulties when designing successful pest control strategies.


1988 ◽  
Vol 38 (3) ◽  
pp. 1645-1648 ◽  
Author(s):  
Chil-Min Kim ◽  
Chang-Ho Cho ◽  
Chul-Se Lee ◽  
Jae-Hag Yim ◽  
Jintai Kim ◽  
...  

2003 ◽  
Vol 52 (4) ◽  
pp. 790
Author(s):  
Luo Xiao-Shu ◽  
Chen Guan-Rong ◽  
Wang Bing-Hong ◽  
Fang Jin-Qing ◽  
Zou Yan-Li ◽  
...  

2008 ◽  
Vol 57 (5) ◽  
pp. 2728
Author(s):  
Wang Xue-Mei ◽  
Zhang Bo ◽  
Qiu Dong-Yuan

2011 ◽  
Vol 21 (07) ◽  
pp. 1927-1933 ◽  
Author(s):  
P. PHILOMINATHAN ◽  
M. SANTHIAH ◽  
I. RAJA MOHAMED ◽  
K. MURALI ◽  
S. RAJASEKAR

We introduce a simple parametrically driven dissipative second-order chaotic circuit. In this circuit, one of the circuit parameters is varied by an external periodic control signal. Thus by tuning the parameter values of this circuit, classic period-doubling bifurcation route to chaos is found to occur. The experimentally observed phenomena is further validated through corresponding numerical simulation of the circuit equations. The periodic and chaotic dynamics of this model is further characterized by computing Lyapunov exponents.


1999 ◽  
Vol 277 (3) ◽  
pp. H1119-H1144 ◽  
Author(s):  
D. Parthimos ◽  
D. H. Edwards ◽  
T. M. Griffith

We have developed a mathematical model of arterial vasomotion in which irregular rhythmic activity is generated by the nonlinear interaction of intracellular and membrane oscillators that depend on cyclic release of Ca2+ from internal stores and cyclic influx of extracellular Ca2+, respectively. Four key control variables were selected on the basis of the pharmacological characteristics of histamine-induced vasomotion in rabbit ear arteries: Ca2+ concentration in the cytosol, Ca2+ concentration in ryanodine-sensitive stores, cell membrane potential, and the open state probability of Ca2+-activated K+ channels. Although not represented by independent dynamic variables, the model also incorporates Na+/Ca2+exchange, the Na+-K+-ATPase, Cl− fluxes, and Ca2+ efflux via the extrusion ATPase. Simulations reproduce a wide spectrum of experimental observations, including 1) the effects of interventions that modulate the functionality of Ca2+ stores and membrane ion channels, 2) paradoxes such as the apparently unpredictable dual action of Ca2+ antagonists and low extracellular Na+ concentration, which can abolish vasomotion or promote the appearance of large-amplitude oscillations, and 3) period-doubling, quasiperiodic, and intermittent routes to chaos. Nonlinearity is essential to explain these diverse patterns of experimental vascular response.


Sign in / Sign up

Export Citation Format

Share Document