Soil-structure interaction vs Site effect for seismic design of tall buildings on soft soil

2014 ◽  
Vol 6 (3) ◽  
pp. 293-320 ◽  
Author(s):  
Behzad Fatahi ◽  
S. Hamid Reza Tabatabaiefar ◽  
Bijan Samali
Author(s):  
Zsuzsa B Pap ◽  
László P Kollár

In case of seismic design the deformability of the soil should be considered, which can be performed in several ways. Most of the methods do not take into account the finite dimensions of the soil, which results significantly different behavior than the spring-dashpot systems. For an infinite medium, which is used in many cases, there are no eigenmodes, however in practical applications the soft soil is always bounded by rocks. For these cases the soil has eigenmodes and the resonance may influence considerably the response of the system. This question was investigated numerically by FE calculations, and it was found that in certain cases the resonance, which is neglected in the common design process, may significantly enhance the earthquake loads. In this paper this phenomenon is investigated and the parameter range is defined when this effect must be taken into account.


Author(s):  
Abdolghafour Khademalrasoul ◽  
Arash Shirmohammadi ◽  
Mohammad Siroos Pakbaz ◽  
Mojtaba Labibzadeh

2019 ◽  
Author(s):  
Jaime A. Mercado ◽  
Luis G. Arboleda-Monsalve ◽  
Vesna Terzic

2020 ◽  
Vol 10 (23) ◽  
pp. 8357
Author(s):  
Ibrahim Oz ◽  
Sevket Murat Senel ◽  
Mehmet Palanci ◽  
Ali Kalkan

Reconnaissance studies performed after destructive earthquakes have shown that seismic performance of existing buildings, especially constructed on weak soils, is significantly low. This situation implies the negative effects of soil-structure interaction on the seismic performance of buildings. In order to investigate these effects, 40 existing buildings from Turkey were selected and nonlinear models were constructed by considering fixed-base and stiff, moderate and soft soil conditions. Buildings designed before and after Turkish Earthquake code of 1998 were grouped as old and new buildings, respectively. Different soil conditions classified according to shear wave velocities were reflected by using substructure method. Inelastic deformation demands were obtained by using nonlinear time history analysis and 20 real acceleration records selected from major earthquakes were used. The results have shown that soil-structure interaction, especially in soft soil cases, significantly affects the seismic response of old buildings. The most significant increase in drift demands occurred in first stories and the results corresponding to fixed-base, stiff and moderate cases are closer to each other with respect to soft soil cases. Distribution of results has indicated that effect of soil-structure interaction on the seismic performance of new buildings is limited with respect to old buildings.


Sign in / Sign up

Export Citation Format

Share Document