Prediction of Gas-Liquid Two-Phase Slug Flow Characteristics in Vertical Small Diameter Pipes by a One-Dimensional Two-Fluids Model

2011 ◽  
Vol 6 (5) ◽  
pp. 740-753 ◽  
Author(s):  
Hiroaki TSUBONE ◽  
Akimaro KAWAHARA ◽  
Michio SADATOMI
1986 ◽  
Vol 108 (4) ◽  
pp. 486-488 ◽  
Author(s):  
E. D. Doss ◽  
M. G. Srinivasan

The empirical expressions for the equivalent friction factor to simulate the effect of particle-wall interaction with a single solid species have been extended to model the wall shear stress for multispecies solid-gas flows. Expressions representing the equivalent shear stress for solid-gas flows obtained from these wall friction models are included in the one-dimensional two-phase flow model and it can be used to study the effect of particle-wall interaction on the flow characteristics.


Author(s):  
Hideo Ide ◽  
Kentaro Satonaka ◽  
Tohru Fukano

Experiments were performed to obtain, analyze and clarify the mean void fraction, the mean liquid holdup, and the liquid slug velocity and the air-water two-phase flow patterns in horizontal rectangular microchannels, with the dimensions equal to 1.0 mm width × 0.1 mm depth, and 1.0 mm width × 0.2 mm depth, respectively. The flow patterns such as bubble flow, slug flow and annular flow were observed. The microchannel data showed similar data patterns compared to those in minichannels with the width of 1∼10mm and the depth of 1mm which we had previously reported on. However, in a 1.0 × 0.1 mm microchannel, the mean holdup and the base film thickness in annular flow showed larger values because the effects of liquid viscosity and surface tension on the holdup and void fraction dominate. The remarkable flow characteristics of rivulet flow and the flow with a partial dry out of the channel inner wall were observed in slug flow and annular flow patterns in the microchannel of 0.1 mm depth.


1998 ◽  
Vol 120 (2) ◽  
pp. 97-101 ◽  
Author(s):  
M. Gopal ◽  
W. P. Jepson

This paper reports the application of novel, digital image analysis techniques in the study of slug flow characteristics, under dynamic conditions in two-phase gas-liquid mixtures. Water and an oil of viscosity 18 cP were used for the liquid phase and carbon dioxide was used for the gas phase. Flow in a 75-mm i.d., 10-m long acrylic pipeline system was studied. Images of slugs were recorded on video by S-VHS cameras, using an audio-visual mixer. Each image was then digitized frame-by-frame and analyzed on a SGI™ workstation. Detailed slug characteristics, including liquid film heights, slug translational velocity, mixing length, and, slug length, were obtained.


Author(s):  
Suat Bagci ◽  
Adel Al-Shareef

Abstract Two-phase flow in hilly terrain pipelines can cause significant practical operating problems. When slugs flow in a hilly terrain pipeline that contains sections of different inclinations they undergo a change of length and slug flow characteristics as the slug move from section to section. In addition, slugs can be generated at low elbows, dissipate at top elbows and shrink or grow in length as they travel along the pipe. A mathematical model and a computer program was developed to simulate these phenomena. The model was based on the sink/source concept at the pipeline connections. A connection between two pipeline sections of different slopes was conveniently called elbow. An elbow accumulates liquid as a sink, and releases liquid as a source. The sink/source has a characteristic capacity of its own. This capacity is positive if the liquid can indeed be accumulated at the elbow or negative if the liquid is actually drained away from the elbow. This type of treatment effectively isolates the flow upstream from an elbow from that downstream, while still allowing flow interactions between two detailed pipeline sections. The hydrodynamic flow model was also used to calculate the film liquid holdup in horizontal and inclined pipelines. The model can successfully predict the liquid film holdup if the liquid film height is assumed to be uniform through the gas pocket. Many other models were used to calculate all the needed parameters to perform the sink/source model. The overall effect of a hill or terrain on slug flow depends on the operating flow rates and pipeline configurations. For special case of near constant slug frequency corresponding to moderately high superficial liquid and gas velocities, this effect was found to be small. The changes in the film characteristics between two adjacent pipeline sections were found to be mostly responsible for the pseudo-slug generation, slug growth and dissipation in the downstream pipeline sections. The film liquid holdup decreased with increasing pipe diameter. The unit slug length increased at the upstream inclined pipes and decreased at the downstream inclined pipes with increasing pipe diameter. The possibility of pseudo-slug generation was increased at large pipe diameters even at high sink capacities. At low sink capacities, no pseudo-slugs were generated at high superficial velocities. The slug flow characteristics was more effected by low superficial gas and liquid velocities, large pipe diameters and shallow pipeline inclinations.


1991 ◽  
Vol 77 (2) ◽  
pp. 236-243 ◽  
Author(s):  
Koichiro SHIBATA ◽  
Masakata SHIMIZU ◽  
Sin-ichi INABA ◽  
Reijiro TAKAHASHI ◽  
Jun-ichiro YAGI

2000 ◽  
Vol 2000.1 (0) ◽  
pp. 819-820
Author(s):  
Hiroaki TSUBONE ◽  
Hiroki NARIYASU ◽  
Akimaro KAWAHARA ◽  
Michio SADATOMI

Author(s):  
M. R. Myers ◽  
H. M. Cave ◽  
S. P. Krumdieck

Two-phase intermittent gas and liquid slug flow in small diameter glass and plastic tubes was studied. Two distinct flow regimes and the transition phenomena were identified. A modified Hagen-Poiseuille relation was derived to describe the extremely high pressure drop due to the surface tension effects of pinned slug flow.


Sign in / Sign up

Export Citation Format

Share Document