scholarly journals SI1-3 Influence of flame propagation velocity on knocking intensity in a super rapid compression machine(SI: Spark-Ignition Engine Combustion,General Session Papers)

Author(s):  
Taiga Hibi ◽  
Toshiki Ito ◽  
Tomohiro Seimiya ◽  
Masato Katsumata ◽  
Mitsuaki Tanabe
Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5039
Author(s):  
Lei Zhou ◽  
Xiaojun Zhang ◽  
Lijia Zhong ◽  
Jie Yu

Knocking is a destructive and abnormal combustion phenomenon that hinders modern spark ignition (SI) engine technologies. However, the in-depth mechanism of a single-factor influence on knocking has not been well studied. Thus, the major aim of the present study is to study the effects of flame propagation velocity and turbulence intensity on end-gas auto-ignition through a large eddy simulation (LES) and a decoupling methodology in a downsized gasoline engine. The mechanisms of end-gas auto-ignition as well as strong pressure oscillation are qualitatively analyzed. It is observed that both flame propagation velocity and turbulence have a non-monotonic effect on knocking intensity. The competitive relationship between flame propagation velocity and ignition delay of the end gas is the primary reason responding to this phenomenon. A higher flame speed leads to an increase in the heat release rate in the cylinder, and consequently, quicker increases in the temperature and pressure of the unburned end-gas mixture are obtained, leading to end-gas auto-ignition. Further, the coupling of a pressure wave and an auto-ignition flame front results in super-knocking with a maximum peak of pressure of 31 MPa. Although the turbulence indirectly influences the end-gas auto-ignition by affecting the flame propagation velocity, it can accelerate the dissipation of radicals and heat in the end gas, which significantly influences knocking intensity. Moreover, it is found that the effect of turbulence is more pronounced than that of flame propagation velocity in inhibiting knocking. It can be concluded that the intensity of the pressure oscillation depends on the unburned mixture mass as well as the local thermodynamic state induced by flame propagation and turbulence, with mutual interactions. The present work is expected to provide valuable perspective for inhibiting super-knocking of an SI gasoline engine.


2018 ◽  
Vol 188 ◽  
pp. 150-161 ◽  
Author(s):  
Changpeng Liu ◽  
Heping Song ◽  
Peng Zhang ◽  
Zhi Wang ◽  
Margaret S Wooldridge ◽  
...  

2020 ◽  
Vol 8 (6) ◽  
pp. 1027-1032

Turbulence is an important parameter to be considered for effective combustion inside a cylinder. Heat transfer inside the cylinder affects the combustion process. Insufficient turbulence leads to incomplete combustion, resulting in pollution. Effective flame propagation leads to higher combustion rates in SI engines which in turn requires enough turbulence. Effective combustion efficiency can be achieved through higher flame propagation velocities. In the present work an attempt has been made to enhance the turbulence inside the cylinder of a single cylinder spark ignition engine by injecting solid nanoparticles into the air fuel mixture.


Sign in / Sign up

Export Citation Format

Share Document