OS11(3)-11(OS11W0026) Modeling of Crack Initiation and Simulation of Low Cycle Fatigue Damage in Biaxial Stress States

Author(s):  
Toshihiko Hoshide ◽  
Yuko Takahashi
Author(s):  
Chao Zhang

Rotating structures can experience biaxial stress states with a wide range of biaxiality ratios on structure surfaces. Low cycle fatigue (LCF) crack initiation in such conditions demonstrates different fatigue characteristics in terms of crack orientation, fatigue life, etc. The biaxial stress states can be categorized into two types: in-phase and out-of-phase under which fatigue characteristics can be significantly different according to rig test results. This paper presents an investigation of LCF crack initiation under in-phase and out-of-phase biaxial stress states based on rig test results of a nickel alloy. The crack orientations are reviewed and discussed at different stress states. Relations of biaxial LCF life debit factor vs biaxiality ratio are derived (the debit factor is defined as a ratio of the LCF life at a biaxial stress state to the LCF life at corresponding uniaxial stress state which has same cyclic and mean stresses as the primary cyclic and mean stressees of the biaxial stress state). The rig test results showed that the crack orientation is usually normal to the primary stress vector under in-phase biaxial stress states but is inclined to the primary stress vector under out-of-phase stress states. As per the derived biaxial LCF life debit factors, the LCF life was found to be slightly reduced with increasing biaxiality ratios under in-phase biaxial stress states but significantly reduced under out-of-phase biaxial stress states compared with corresponding uniaxial primary stress states. The equivalent cyclic stress fatigue criterion is also employed to theoretically model the biaxial LCF life debit factor under in-phase biaxial stress states. The hydrostatic cyclic stress is included in the equivalent cyclic stress in order to take into account the hydrostatic cyclic pressure effects. The equivalent cyclic stress in the criterion can physically reflect the materials’ ductility reduction under in-phase multiaxial stress states.


Author(s):  
Hiun Nagamori ◽  
Koji Takahashi

The stress states of elbow and tee pipes are complex and different from those of straight pipes. Several researchers have reported the low-cycle fatigue lives of elbows and tees under cyclic bending with internal pressure conditions. In this work, finite element analyses were carried out to simulate the reported experimental results of elbows and tees. The crack initiation area and the crack growth direction were successfully predicted by the analyses. The analytical results showed that the revised universal slope method can accurately predict the low-cycle fatigue lives of elbow and tee pipes under internal pressure conditions regardless of differences in shape and dimensions.


2013 ◽  
Vol 569-570 ◽  
pp. 1029-1035
Author(s):  
Magd Abdel Wahab ◽  
Irfan Hilmy ◽  
Reza Hojjati-Talemi

In this paper, Continuum Damage Mechanics (CDM) theory is applied to low cycle and high cycle fatigue problems. Damage evolution laws are derived from thermodynamic principles and the fatigue number of cycles to crack initiation is expressed in terms of the range of applied stresses, triaxiality function and material constants termed as damage parameters. Low cycle fatigue damage evolution law is applied to adhesively bonded single lap joint. Damage parameters as function of stress are extracted from the fatigue tests and the damage model. High cycle fatigue damage model is applied to fretting fatigue test specimens and is integrated within a Finite Element Analysis (FEA) code in order to predict the number of cycles to crack initiation. Fretting fatigue problems involve two types of analyses; namely contact mechanics and damage/fracture mechanics. The high cycle fatigue damage evolution law takes into account the effect of different parameters such as contact geometry, axial stress, normal load and tangential load.


2006 ◽  
Vol 514-516 ◽  
pp. 804-809
Author(s):  
S. Gao ◽  
Ewald Werner

The forging die material, a high strength steel designated W513 is considered in this paper. A fatigue damage model, based on thermodynamics and continuum damage mechanics, is constructed in which both the previous damage and the loading sequence are considered. The unknown material parameters in the model are identified from low cycle fatigue tests. Damage evolution under multi-level fatigue loading is investigated. The results show that the fatigue life is closely related to the loading sequence. The fatigue life of the materials with low fatigue loading first followed by high fatigue loading is longer than that for the reversed loading sequence.


2014 ◽  
Vol 891-892 ◽  
pp. 1711-1716 ◽  
Author(s):  
Loic Signor ◽  
Emmanuel Lacoste ◽  
Patrick Villechaise ◽  
Thomas Ghidossi ◽  
Stephan Courtin

For conventional materials with solid solution, fatigue damage is often related to microplasticity and is largely sensitive to microstructure at different scales concerning dislocations, grains and textures. The present study focuses on slip bands activity and fatigue crack initiation with special attention on the influence of the size, the morphology and the crystal orientation of grains and their neighbours. The local configurations which favour - or prevent - crack initiation are not completely identified. In this work, the identification and the analysis of several crack initiation sites are performed using Scanning Electron Microscopy and Electron Back-Scattered Diffraction. Crystal plasticity finite elements simulation is employed to evaluate local microplasticity at the scale of the grains. One of the originality of this work is the creation of 3D meshes of polycrystalline aggregates corresponding to zones where fatigue cracks have been observed. 3D data obtained by serial-sectioning are used to reconstruct actual microstructure. The role of the plastic slip activity as a driving force for fatigue crack initiation is discussed according to the comparison between experimental observations and simulations. The approach is applied to 316L type austenitic stainless steels under low-cycle fatigue loading.


Sign in / Sign up

Export Citation Format

Share Document