scholarly journals Determination of Resistance Coefficient and Turbulent Friction Factor in Non-Circular Ducts.

2000 ◽  
Vol 43 (2) ◽  
pp. 136-142
Author(s):  
Habib UMUR
1983 ◽  
Vol 4 ◽  
pp. 170-173 ◽  
Author(s):  
D. M. McClung ◽  
P. A. Schaerer

An avalanche dynamics model, appropriate for complex terrain, for real avalanche paths was developed by Perla, Cheng and McClung in 1980. The model has two friction terms, one for sliding friction which is independent of speed, and one for turbulent friction which is proportional to V2, where V is the centre-of-mass speed along the incline. By introducing speed maxima for avalanches, along with start and stop reference positions, it is possible to determine the the two constant friction coefficients for the model. When this is done, it is found that speed data often exceed a model speed limit implied by the application of V = 0 at the start and stop positions. This effect is illustrated by analytic solutions of the relevant equations, as well as numerical solutions for actual avalanche paths. Some limitations and properties of the fundamental modelling are outlined and suggestions given for future use of such models.


1988 ◽  
Vol 110 (4) ◽  
pp. 431-440 ◽  
Author(s):  
N. T. Obot

It has been demonstrated conclusively that the widely observed differences in data for frictional pressure coefficient between circular and noncircular passages derive from the inseparably connected effects of transition and the choice of a length scale. A relatively simple approach, the critical friction method (CFM), has been developed and when applied to triangular, rectangular, and concentric annular passages, the reduced data lie with remarkable consistency on the circular tube relations. In accordance with the theory of dynamical similarity, it has also been shown that noncircular duct data can be reduced using the hydraulic diameter or any arbitrarily defined length scale. The proposed method is what is needed to reconcile such data with those for circular tubes. With the hydraulic diameter, the critical friction factor almost converges to a universal value for all passages and the correction is simply that required to account for the difference in critical Reynolds number. By contrast, with any other linear parameter, two corrections are needed to compensate for variations in critical friction factor and Reynolds number. Application of the method to roughened passages is discussed.


Inge CUC ◽  
2017 ◽  
Vol 13 (2) ◽  
pp. 35-41
Author(s):  
Ramón Pérez Gálvez ◽  
José Ramón Fuentes Vega ◽  
Juan Bautista Cogollos Martínez ◽  
Víctor Millo Carmenate ◽  
Leandro Oscar Botana Beltrán

Author(s):  
S P Rykov ◽  
V N Tarasuyk ◽  
V S Koval ◽  
N I Ovchinnikova ◽  
A I Fedotov ◽  
...  

2018 ◽  
Vol 193 ◽  
pp. 02034
Author(s):  
Ilya Bryansky ◽  
Yuliya Bryanskaya ◽  
Аleksandra Оstyakova

The data of hydraulic characteristics of flow are required to be more accurate to increase reliability and accident-free work of water conducting systems and hydraulic structures. One of the problems in hydraulic calculations is the determination of friction loss that is associated with the distribution of velocities over the cross section of the flow. The article presents a comparative analysis of the regularities of velocity distribution based on the logarithmic velocity profile and hydraulic resistance in pipes and open channels. It is revealed that the Karman parameter is associated with the second turbulence constant and depend on the hydraulic resistance coefficient. The research showed that the behavior of the second turbulence constant in the velocity profile is determined mainly by the Karman parameter. The attached illustrations picture the dependence of logarithmic velocity profile parameters based on different values of the hydraulic resistance coefficient. The results of the calculations were compared to the experimental-based Nikuradze formulas for smooth and rough pipes.


1999 ◽  
Vol 171 (1) ◽  
pp. 77-93 ◽  
Author(s):  
P. MORANCAIS ◽  
K. HIRECH ◽  
G. CARNELLE ◽  
J. LEGRAND

Sign in / Sign up

Export Citation Format

Share Document