Elastic Wave Propagation Analysis for Split-Hopkinson Pressure Bar apparatus equipped with flanges

2017 ◽  
Vol 2017.30 (0) ◽  
pp. 249
Author(s):  
Kenichi Tanigaki ◽  
Hiroyuki Yamada
1983 ◽  
Vol 105 (1) ◽  
pp. 61-66 ◽  
Author(s):  
P. S. Follansbee ◽  
C. Frantz

Elastic wave propagation in the split Hopkinson pressure bar (SHPB) is discussed with an emphasis on the origin and nature of the oscillations that often trail the leading edge of the pressure wave. We show that in the conditions of the SHPB test the pressure bars vibrate in the fundamental mode and that elastic wave propagation can be fully described mathematically. Excellent agreement is found between experimental results and predictions of the mathematical treatment. This suggests that dispersion effects in the pressure bars can be removed from the strain gage records, which reduces the magnitude of the oscillations in the resulting stress strain curve.


2020 ◽  
Vol 10 (7) ◽  
pp. 2423 ◽  
Author(s):  
Robert Panowicz ◽  
Marcin Konarzewski

The effect of using a pulse shaper technique, such as rounding a striker or applying a pulse shaper on the signals recorded with the split Hopkinson pressure bar (SHPB) technique, when the striker and the input bar are in an imperfect position, was investigated. Two of the most common cases have been analyzed: an offset of the symmetry axes of the striker and the input bar; and an inclination angle between the striker and the input bar. LS-Dyna software was used to examine this problem numerically. The inclination angle imperfection has a significant impact on signal disturbances, whereas the use of a rounded striker significantly affects the limitation of the vibration flexural modes. In all considered cases, a slight imperfection causes a reduction in the high-frequency Pochhammer–Chree oscillations.


Studies of the properties of materials at high strain rates by the split Hopkinson pressure bar suggest that most materials show a sharp increase in strain rate sensitivity at high rates. In this paper, analytical and numerical evidence is presented which shows that his apparent increase in the strain rate sensitivity reported in the literature may result from stress wave propagation effects present in the test. A one-dimensional analytical solution has been developed for a rate independent bi-linear material tested in a split Hopkinson pressure bar apparatus. The solution, which is based on a stress wave reverberation model, shows that there is an apparent increase in the strain rate sensitivity of the material which can only be explained in terms of large propagating plastic wave fronts in the specimen. Numerical modelling of the same test geometry for the same input material model is in excellent agreement showing conclusively that stress wave propagation effects are inevitable at high impact velocities. The assumption of uniform stress and strain distribution within a split Hopkinson pressure bar specimen is therefore incorrect at high impact velocities. The formulation of the novel numerical code used in the present work, which is based on the finite volume technique, is also presented.


2013 ◽  
Vol 634-638 ◽  
pp. 2861-2864
Author(s):  
Hong Bin Jin

The assumption of uniform stress in a test specimen is fundamental to SHPB test technique. In the present paper, a numerical simulation of wave propagation in SHPB is performed to validate the assumption. A one-dimensional model based on CSPM is firstly developed. Then the wave propagations in SHPB with various area ratios of bar/specimen are simulated. The results show that the condition of stress uniformity is not satisfied, especially at the beginning of wave propagation. For the large area specimen, the stress tends to be uniform. While for the small area specimen, the non-uniformity of stress is more apparent.


2014 ◽  
Vol 590 ◽  
pp. 63-68 ◽  
Author(s):  
Zhu Hua Tan ◽  
Bo Zhang ◽  
Peng Cheng Zhai

The effect of stress wave propagation on dynamic response of square tube was investigated by the experimental and numerical simulation methods in the present paper. The square tubes were subjected to the axial impact by split Hopkinson pressure bar. And the deformation process of each square tube was recorded by a high speed camera. Typical dynamic plastic buckling phenomena were observed in the experiments. And the numerical calculation of the experimental load case was conducted to analyze the effect of the stress wave propagation on the initial buckling of the square tube. The results show that there is obvious stress wave propagation in the square tube before the buckling of the square tube. And the initial buckling starts from the rear end of the tube due to the propagation of the stress wave. The relation between the stress wave propagation and initial buckling of the square tube was also discussed.


2013 ◽  
Vol 20 (4) ◽  
pp. 555-564 ◽  
Author(s):  
Wojciech Moćko

Abstract The paper presents the results of the analysis of the striker shape impact on the shape of the mechanical elastic wave generated in the Hopkinson bar. The influence of the tensometer amplifier bandwidth on the stress-strain characteristics obtained in this method was analyzed too. For the purposes of analyzing under the computing environment ABAQUS / Explicit the test bench model was created, and then the analysis of the process of dynamic deformation of the specimen with specific mechanical parameters was carried out. Based on those tests, it was found that the geometry of the end of the striker has an effect on the form of the loading wave and the spectral width of the signal of that wave. Reduction of the striker end diameter reduces unwanted oscillations, however, adversely affects the time of strain rate stabilization. It was determined for the assumed test bench configuration that a tensometric measurement system with a bandwidth equal to 50 kHz is sufficient


Sign in / Sign up

Export Citation Format

Share Document