Ab-initio caluculation for temprerature dependent stacking fault energy of 4H-SiC

2019 ◽  
Vol 2019.32 (0) ◽  
pp. 050
Author(s):  
Hiroki SAKAKIMA ◽  
So TAKAMOTO ◽  
Asuka HATANO ◽  
Satoshi IZUMI
Author(s):  
Yuji Ikeda ◽  
Fritz Körmann

AbstractInterstitial alloying has become an important pillar in tuning and improving the materials properties of high-entropy alloys, e.g., enabling interstitial solid-solution hardening and for tuning the stacking fault energies. In this work we performed ab initio calculations to evaluate the impact of interstitial alloying with nitrogen on the fcc–hcp phase stability for the prototypical CrMnFeCoNi alloy. The N solution energies are broadly distributed and reveal a clear correlation with the local environments. We show that N addition stabilizes the fcc phase of CrMnFeCoNi and increases the stacking fault energy.


2015 ◽  
Vol 99 ◽  
pp. 253-255 ◽  
Author(s):  
K.R. Limmer ◽  
J.E. Medvedeva ◽  
D.C. Van Aken ◽  
N.I. Medvedeva

1994 ◽  
Vol 339 ◽  
Author(s):  
F. R. Chien ◽  
S. R. Nutt ◽  
W. S. Yoo

ABSTRACTAs-grown SiC single crystals and as-deposited SiC epilayers often exhibit stacking faults. The most probable fault configurations that occur in 6H- or 15R-SiC crystals are deduced from calculations of the stacking fault energies using a modified Ising model with the Ising parameters taken from earlier ab initio calculations. In this study, experimental TEM observations reveal stacking fault configurations in 6H- and 15R-SiC, and the observed configurations are compared with calculated stacking fault energies.


Author(s):  
K. Z. Botros ◽  
S. S. Sheinin

The main features of weak beam images of dislocations were first described by Cockayne et al. using calculations of intensity profiles based on the kinematical and two beam dynamical theories. The feature of weak beam images which is of particular interest in this investigation is that intensity profiles exhibit a sharp peak located at a position very close to the position of the dislocation in the crystal. This property of weak beam images of dislocations has an important application in the determination of stacking fault energy of crystals. This can easily be done since the separation of the partial dislocations bounding a stacking fault ribbon can be measured with high precision, assuming of course that the weak beam relationship between the positions of the image and the dislocation is valid. In order to carry out measurements such as these in practice the specimen must be tilted to "good" weak beam diffraction conditions, which implies utilizing high values of the deviation parameter Sg.


2020 ◽  
pp. 5-18
Author(s):  
D. V. Prosvirnin ◽  
◽  
M. S. Larionov ◽  
S. V. Pivovarchik ◽  
A. G. Kolmakov ◽  
...  

A review of the literature data on the structural features of TRIP / TWIP steels, their relationship with mechanical properties and the relationship of strength parameters under static and cyclic loading was carried out. It is shown that the level of mechanical properties of such steels is determined by the chemical composition and processing technology (thermal and thermomechanical processing, hot and cold pressure treatment), aimed at achieving a favorable phase composition. At the atomic level, the most important factor is stacking fault energy, the level of which will be decisive in the formation of austenite twins and / or the formation of strain martensite. By selecting the chemical composition, it is possible to set the stacking fault energy corresponding to the necessary mechanical characteristics. In the case of cyclic loads, an important role is played by the strain rate and the maximum load during testing. So at high loading rates and a load approaching the yield strength under tension, the intensity of the twinning processes and the formation of martensite increases. It is shown that one of the relevant ways to further increase of the structural and functional properties of TRIP and TWIP steels is the creation of composite materials on their basis. At present, surface modification and coating, especially by ion-vacuum methods, can be considered the most promising direction for the creation of such composites.


Sign in / Sign up

Export Citation Format

Share Document