1208 Development of small-sized control valve and control of wearable pneumatic actuator

2006 ◽  
Vol 2006.44 (0) ◽  
pp. 451-452
Author(s):  
Takashi Masui ◽  
Tetsuya Akagi ◽  
Shujiro Dohta ◽  
Hisashi Matsushita
2013 ◽  
Vol 706-708 ◽  
pp. 1025-1028 ◽  
Author(s):  
Zhi Gang Feng ◽  
Xue Juan Zhang

Actuator, as the execution of the terminal unit of the control system is directly related to the safe and reliable operation of the production process, and once actuators in the system malfunction, will bring huge losses. The research on pneumatic actuator not only devote to the study of its structure, but also need to study the basic theory of the actuator system modeling, and Laid a foundation for the study of the actuator fault diagnosis. Firstly, this paper introduces the components and working principle of the pneumatic actuators which mainly include three parts: pneumatic servomotor, positioner, and control valve. Secondly, the DABlib modules of MATLAB/Simulink as the simulation model of actuator failure are introduced. Finally, we analyzed the common faults of the pneumatic servomotor, positioner, and control valve, and in the MATLAB/Simulink environment, the faults are simulated, and describes the phenomenon of two typical fault.


2014 ◽  
Vol 630 ◽  
pp. 375-382 ◽  
Author(s):  
Daniel Himr ◽  
Vladimir Haban

A pumping station in a fuel storage suffered from pressure pulsations in a petrodiesel pipeline. Check valves protecting the station against back flow made a big noise when disc hit a seat. Due to employees complaints we were asked to solve the problem, which could lead to serious mechanical problems. Pressure measurement in the pipeline showed great pulsations, which were caused by self-excited oscillation of control valves at the downstream end of pipeline. The operating measurement did not catch it because of too low sampling frequency. One dimensional numerical model of the whole hydraulic system was carried out. The model consisted of check valve, pipeline and control valve, which could oscillate, so it was possible to simulate the unsteady flow. When the model was validated, a vessel with nitrogen was added to attenuate pressure pulsations. According to the results of numerical simulation, the vessel was installed on the location. Subsequent measurement proved noticeably lower pulsations and almost no noise.


1993 ◽  
Vol 115 (3) ◽  
pp. 571-575 ◽  
Author(s):  
J. Lieh

A passenger car model with a full car body and four wheel-axle assemblies is used to investigate the influence of semiactive suspensions on ride performance. Mean square values are evaluated for various damping levels and control valve switching times. Due to severe nonlinearities, frequency responses are not obtained directly. They are reconstructed from Fast Fourier Transform (FFT) using a Hanning window. The results are compared with those from LQR active suspensions and pure on-off dampers. The effect of control valve switching time (bandwidth) is studied and shows a significant influence on the vehicle ride, suspension travels, and tire deflections.


2021 ◽  
Vol 286 ◽  
pp. 04010
Author(s):  
Valentin Nicolae Cococi ◽  
Constantin Călinoiu ◽  
Carmen-Anca Safta

In nowadays the pneumatic controlled systems are widely used in industrial applications where valves must be operated, where there is a fire ignition risk, or in different automation systems where a positioning action is desired. The paper presents the experimental results of a pneumatic actuator controlled by a proportional control valve. The goal of the paper is to compare the experimental results with the numerical simulation results and to improve the mathematical model associated with the experiment.


Author(s):  
James McGhee ◽  
Doug Newlands ◽  
Stuart Farquhar ◽  
Herbert L. Miller

Vibration of the recycle piping system on the Main Oil Line (MOL) Export Pumps from a platform in the North Sea raised concern about pipe breakage due to fatigue. Failures had already occurred in associated small bore piping and the instrument air supply lines and control accessories on the recycle flow control valves. Concern also existed due to the vibration of non-flowing pipe work and systems such as the deck structure, cable trays and other instrumentation, which included fire and gas detection systems. Many changes involving bracing of small bore attachments, stiffening of supports, adding supports and stiffing the deck structure were implemented without resolving the problem. The vibration was finally solved by adding enough pressure stages to assure the valve trim exit velcoities and energy levels were reduced to levels demonstrated historically as needed in severe service applications. This vibration energy reduction was more than 16 times. This was achieved by reducing the valve trim exit velocity from peaks of 74 m/s to 12 m/s (240 ft/s to 40 ft/s).


Sign in / Sign up

Export Citation Format

Share Document