Evaluation of torsional properties of A6061 aluminum alloy friction welded butt joint by using digital image correlation

2019 ◽  
Vol 2019.57 (0) ◽  
pp. 307
Author(s):  
Yuta TACHI ◽  
Sho OGAWA ◽  
Yuichi ONO ◽  
Takashi YOKOYAMA
2016 ◽  
Vol 2 ◽  
pp. 3415-3422 ◽  
Author(s):  
Zaidao Li ◽  
Nathalie Limodin ◽  
Amina Tandjaoui ◽  
Philippe Quaegebeur ◽  
Jean-François Witz ◽  
...  

2020 ◽  
Vol 2020.69 (0) ◽  
pp. 222
Author(s):  
Shinsuke NOHARA ◽  
Stefan Marth ◽  
Hans-Åke Häggblad ◽  
Slim Djebien ◽  
Masahiro NISHIDA

2016 ◽  
Vol 879 ◽  
pp. 363-368 ◽  
Author(s):  
P.A.M.G.P. Bamberg ◽  
Uwe Reisgen ◽  
B. Marx ◽  
J.D.V. Barbosa ◽  
R.S. Coelho

Structural adhesives methods for joining multi material sheets have been focus of studies and researches for the last years. The most common and widely known type of test is the tensile test of single lap joints (SLJ). However, there are opportunities for analyzing the mechanical performance of such method in SLJ with materials of different properties, such as ductile structural aluminum alloys and high strength steels. It’s also known that the stress state of SLJ, when stressed longitudinally, generates secondary forces. One of them is known as cleavage force which initially leads to the failure of bonded joints. The aim of this work is to analyze the stress state of similar and dissimilar materials SLJ submitted to tensile stresses and also the influence of some variables, such as overlap length, adhesive film thickness and adherend yield limit, over the stress strength of the samples. As adherend materials it was selected the structural aluminum alloy AA 5083 H111 and the high strength steel DP600. At the end of this work it is expected to understand the proper stress state of the SLJ when using similar and dissimilar materials, identifying stress concentrators that bring the structure to fail, using the Digital Image Correlation (DIC) method. It was discovered that the yield strength associated with the overlap length highly influences the SLJ strength, by leading it to a close to pure adhesive shear stress state.


Author(s):  
Renee D. Rogge ◽  
Scott R. Small ◽  
Derek B. Archer ◽  
Michael E. Berend ◽  
Merrill A. Ritter

Many previous biomechanical studies of bone and bone substitutes have estimated strains in these materials using strain gages. The purpose of this study was to compare digital image correlation (DIC) strain measurements to those obtained from strain gages in order to assess the applicability of DIC technology to common biomechanical testing scenarios. Compression and bending tests were conducted on aluminum alloy, polyurethane foam, and laminated polyurethane foam specimens. Results showed no significant differences in the principal strain values (or the variances) between strain gage and DIC measurements on the aluminum alloy and laminated polyurethane foam specimens. There were significance differences between the principal strain measurements of the non-laminated polyurethane foam specimens, but the deviation from the theoretical results was similar for both measurement techniques. In summary, DIC techniques provide similar results to those obtained from strain gages and also provide full field strain results.


Sign in / Sign up

Export Citation Format

Share Document