603 Modal Parameter Identification of Time Varying Systems by Time Domain Subspace Algorithm

2009 ◽  
Vol 2009 (0) ◽  
pp. _603-1_-_603-6_
Author(s):  
Junihci HINO ◽  
Michio YONEDA ◽  
Masao KURIMOTO
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Jie Zhang ◽  
Zhiyu Shi

Instantaneous modal parameter identification of time-varying dynamic systems is a useful but challenging task, especially in the identification of damping ratio. This paper presents a method for modal parameter identification of linear time-varying systems by combining adaptive time-frequency decomposition and signal energy analysis. In this framework, the adaptive linear chirplet transform is applied in time-frequency analysis of acceleration response for its higher energy concentration, and the response of each mode can be adaptively decomposed via an adaptive Kalman filter. Then, the damping ratio of the time-varying systems is identified based on energy analysis of component response signal. The proposed method can not only improve the accuracy of instantaneous frequency extraction but also ensure the antinoise ability in identifying the damping ratio. The efficiency of the method is first verified through a numerical simulation of a three-degree-of-freedom time-varying structure. Then, the method is demonstrated by comparing with the traditional wavelet and time-domain peak method. The identified results illustrate that the proposed method can obtain more accurate modal parameters in low signal-to-noise ratio (SNR) scenarios.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Haotian Zhou ◽  
Kaiping Yu ◽  
Yushu Chen ◽  
Rui Zhao ◽  
Yunhe Bai

This article presents a time-varying modal parameter identification method based on the novel information criterion (NIC) algorithm and a post-process method for time-varying modal parameter estimation. In the practical application of the time-varying modal parameter identification algorithm, the identified results contain both real modal parameters and aberrant ones caused by the measurement noise. In order to improve the quality of the identified results as well as sifting and validating the real modal parameters, a post-process procedure based on density-based spatial clustering of applications with noise (DBSCAN) algorithm is introduced. The efficiency of the proposed approach is first verified through a numerical simulation of a cantilever Euler-Bernoulli beam with a time-varying mass. Then the proposed approach is experimentally demonstrated by composite sandwich structure in a time-varying high temperature environment. The identified results illustrate that the proposed approach can obtain real modal frequencies in low signal-to-noise ratio (SNR) scenarios.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Peng Wen ◽  
Inamullah Khan ◽  
Jie He ◽  
Qiaofeng Chen

Modal parameter identification is considered to be one of the most important tasks in structural health monitoring because it provides a reliable reference for structural vibration control, damage severity, and operational state. Moreover, at present, the combined deterministic-stochastic subspace algorithm is cogitated as one of the key algorithms in the modal parameter identification, which is why it is widely used in the modal parameter identification of bridge structures. In this paper, a novel method is proposed, which is a time-domain identification algorithm, based on sliding window-fuzzy C-means clustering algorithm-combined with deterministic-stochastic subspace identification (SC-CDSI), to achieve online intelligent tracking and identification of modal parameters for nonlinear time-varying structures. First of all, to realize the online tracking and identification process, it is necessary to divide the input and output signal of the nonlinear time-varying structure by windowing; for that, to determine the window function, window size and window step length according to the characteristics of the signal are analyzed. Secondly, in order to satisfy the intelligent identification of effective modals in stability diagram, the fuzzy C-means clustering algorithm is kept as a base, whereas frequency, damping ratio, and modal shapes serve as clustering elements, applied to fuzzy C-means clustering algorithm, and then the intelligent selection of effective modals is achieved. Finally, a shaking table test bridge is used as a modal parameter identification in lab, and its results are compared with the MIDAS finite element results. The compared results show that the proposed SC-CDSI identification algorithm can accurately achieve the intelligent identification of online tracking of the structural frequency, and the identification results are reliable to be used in real-life bridge structures.


2009 ◽  
Vol 135 (7) ◽  
pp. 669-683 ◽  
Author(s):  
Reza D. Nayeri ◽  
Farzad Tasbihgoo ◽  
Mazen Wahbeh ◽  
John P. Caffrey ◽  
Sami F. Masri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document