0302 Improvement of Separation Efficiency at Low Velocity Region of Liquid Cyclone Separator

2012 ◽  
Vol 2012 (0) ◽  
pp. 131-132
Author(s):  
Tsugue ITOH ◽  
Fumio INOUE ◽  
Masahiro OSAKABE
2010 ◽  
Vol 45 (5) ◽  
pp. 737-742 ◽  
Author(s):  
Tugue Itoh ◽  
Fumio Inoue ◽  
Masahiro Osakabe

2020 ◽  
Vol 497 (2) ◽  
pp. 1475-1487
Author(s):  
G Subebekova ◽  
S Zharikov ◽  
G Tovmassian ◽  
V Neustroev ◽  
M Wolf ◽  
...  

ABSTRACT We obtained photometric observations of the nova-like (NL) cataclysmic variable RW Tri and gathered all available AAVSO and other data from the literature. We determined the system parameters and found their uncertainties using the code developed by us to model the light curves of binary systems. New time-resolved optical spectroscopic observations of RW Tri were also obtained to study the properties of emission features produced by the system. The usual interpretation of the single-peaked emission lines in NL systems is related to the bi-conical wind from the accretion disc’s inner part. However, we found that the Hα emission profile is comprised of two components with different widths. We argue that the narrow component originates from the irradiated surface of the secondary, while the broader component’s source is an extended, low-velocity region in the outskirts of the accretion disc, located opposite to the collision point of the accretion stream and the disc. It appears to be a common feature for long-period NL systems – a point we discuss.


Geophysics ◽  
1996 ◽  
Vol 61 (6) ◽  
pp. 1738-1757 ◽  
Author(s):  
Don W. Vasco ◽  
John E. Peterson ◽  
Ernest L. Majer

It is possible to efficiently use traveltime and amplitude information to infer variations in velocity and Q. With little additional computation, terms accounting for source radiation pattern and receiver coupling may be included in the inversion. The methodology is based upon a perturbation approach to paraxial ray theory. The perturbation approach linearizes the relationship between velocity deviations and traveltime and amplitude anomalies. Using the technique, we infer the velocity and attenuation structure at a fractured granitic site near Raymond, California. A set of four well pairs are examined and each is found to contain two zones of strong attenuation. The velocity variations contain an upper low velocity region corresponding to the uppermost attenuating zone. The location of these zones agrees with independent well‐log and geophysical data. The velocity and attenuation anomalies appear to coincide with extensively fractured sections of the borehole and may indicate fracture zones rather than individual fractures.


2011 ◽  
Vol 415-417 ◽  
pp. 1516-1520
Author(s):  
Xue Ping Wang ◽  
Zhen Wei Zhang

This paper mainly focuses on the numerical simulation of the gas flow field of cyclone separator. The authors took advanced of RSM turbulence model of software Fluent to simulate the gas field. The regulations among structure parameter of exhaust pipe, pressure lose and separation efficiency can be obtained according to the numerical simulation results under the situation of changing the structural parameters. The conclusion of this paper can put forward the theoretical reference for the structure optimization of cyclone separation.


2003 ◽  
Vol 30 (2) ◽  
Author(s):  
S. Bazin ◽  
A. J. Harding ◽  
G. M. Kent ◽  
J. A. Orcutt ◽  
S. C. Singh ◽  
...  

2013 ◽  
Vol 405-408 ◽  
pp. 2487-2491
Author(s):  
Cun Cheng Shi ◽  
Xin Fan ◽  
Sheng Guo Zou ◽  
Meng Shen Li

With the development of the earth penetration weapon, the research interest has gradually changed from low velocity impact to high velocity or hypervelocity penetration. This paper reviews the the theoretic research status on velocity region ascertaining of penetration, the target material properties near penetration cavity and mass abrasion of projectiles in high velocity penetration, and makes suggestions on the future research.


Author(s):  
Lingzi Wang ◽  
Jianmei Feng ◽  
Shijing Xu ◽  
Xiang Gao ◽  
Xueyuan Peng

The film flow behavior in an oil–gas cyclone separator was experimentally studied to improve the separation efficiency in terms of the effect of the oil film on the cylinder wall. The oil film flow pattern was captured using a high-speed camera, and the cylinder wall was divided into seven regions to analyze according to the different oil film flow patterns. Along the cyclone cylinder height, the central part of the cylinder was the main flow area, in which droplet–wall collisions and oil film splashing were severe. Additionally, the oil film’s distribution characteristics under inlet velocities of 14.0, 16.0, and 18.0 m/s were compared, and the results showed that more splashing oil droplets were generated under higher inlet velocity. Moreover, changing the structure of the central channel and outer cylinder slightly changed the oil film’s area and flow pattern but exhibited a weak effect on the oil film thickness and re-entrainment. Then, an improved structure was proposed by adding a porous cylinder to the outer cyclone to avoid the generation of small splashing droplets from the oil film. The performance of the modified separator was measured in a real oil-injected compressor system, which demonstrated higher separation efficiency with no increase in static pressure loss. The separation efficiency increased by up to 2.7%, while the pressure loss decreased by up to 10%. Thus, the improved structure can improve the performance of oil–gas separators by changing the distribution and thickness of the oil film on the cylinder wall.


Sign in / Sign up

Export Citation Format

Share Document