820 Residual Stresses in V Shape Bended 6000 Series Aluminum Alloy Plate

2014 ◽  
Vol 2014.51 (0) ◽  
pp. _820-1_-_820-2_
Author(s):  
Tomohiro Okizaki ◽  
Takashi Kawakami ◽  
Takahiro Kinoshita ◽  
Atsuhiro Matsuura
2014 ◽  
Vol 1082 ◽  
pp. 403-407 ◽  
Author(s):  
Hong Huang ◽  
Qing Yun Zhao ◽  
Feng Lei Liu

Split-sleeve cold expansion processing was employed on the 7050-T7451 aluminum alloy plate. Fatigue lives were compared according different expansion, then the relationship of fatigue life and expansion was analyzed. Residual stresses were measured with different expansion, and the fatigue fractograph was analyzed by SEM. The results show that the split-sleeve cold expansion can obtain longer life compared with the non-strengthen hole. When over the optimum expansion, fatigue life began to decrease. The maximum fatigue life increased to 2.92 times with 4.1% expansion. The maximum values of radial residual stresses grew with expansion. The depths of residual compressive stresses were more than 6mm with 2.6% and 4.1% expansion. The fatigue fractograph shows mixed transgranular fracture.


2011 ◽  
Vol 381 ◽  
pp. 44-47
Author(s):  
Hun Guo ◽  
Dun Wen Zuo ◽  
Guo Xing Tang ◽  
W.M. Gan

Formulae of stress re-distribution and distortion by stress releasing during milling process are deduced to Initial Residual Stresses. Theory prediction of milling deformation due to residual stress is finished, and some calculating equation is given for the deformation solution. By means of these researches, the mechanism of the milling deformation due to residual stress is analyzed, the machining distortion caused by residual stress are analyzed and summarized using the analytical method.


2010 ◽  
Vol 97-101 ◽  
pp. 3187-3193 ◽  
Author(s):  
Shu Yuan Zhang ◽  
Yun Xin Wu

A mathematical model has been developed to predict the residual stresses level in pre-stretched aluminum alloy plate. This is based on force balances of the residual stress, theory of plastoelasticity and a new conception of free length. The model is relatively simple because only rolling direction residual stress is taken into account, but provides a clear illustration of stress relief mechanism in stretching process. With this model, residual stress distributions of stretched beam can be determined directly by knowing the specimen dimensions, material properties and the original stress. The model offers an useful tool to show the effect of varying tension ratio on the final residual stress level, thus makes it possible to predict stress relief and control residual stresses. An example of using the model is presented by applying published data while showing mechanism of stress relief during stretching. Analysis indicates that it is stretch-caused convergence of the free lengths of strips in beam that lead to reduction in the residual stresses.


2018 ◽  
Vol 18 (5) ◽  
pp. 1159-1167 ◽  
Author(s):  
Jun Wang ◽  
Xing-Quan Zhang ◽  
Wei Wei ◽  
Jin-Yu Tong ◽  
Bin Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document