Effect of Split-Sleeve Cold Expansion on the Fatigue Life of 7050-T7451 Aluminum Alloy

2014 ◽  
Vol 1082 ◽  
pp. 403-407 ◽  
Author(s):  
Hong Huang ◽  
Qing Yun Zhao ◽  
Feng Lei Liu

Split-sleeve cold expansion processing was employed on the 7050-T7451 aluminum alloy plate. Fatigue lives were compared according different expansion, then the relationship of fatigue life and expansion was analyzed. Residual stresses were measured with different expansion, and the fatigue fractograph was analyzed by SEM. The results show that the split-sleeve cold expansion can obtain longer life compared with the non-strengthen hole. When over the optimum expansion, fatigue life began to decrease. The maximum fatigue life increased to 2.92 times with 4.1% expansion. The maximum values of radial residual stresses grew with expansion. The depths of residual compressive stresses were more than 6mm with 2.6% and 4.1% expansion. The fatigue fractograph shows mixed transgranular fracture.

Author(s):  
Kuanyu Liu ◽  
Xinsheng Yang ◽  
Li Zhou ◽  
Ming Li ◽  
Weijin Zhu

The reaming process of the 6061 aluminum alloy plate after cold expansion with split sleeve was simulated by finite element (FE) method based on Abaqus/CAE, the relationship between the reaming depths and the distribution of residual stress fields is obtained by analysis. The fatigue lives of the plate under different reaming depths were calculated by using the fatigue analysis software FE-SAFE, and verified by fatigue tests. The results show that reaming after expansion will increase the residual compressive stress at the hole edge on the entrance surface. In addition, the fatigue life of the specimens increases with the increase of the reaming depth, and the best fatigue gain of the specimen is obtained when the reaming depth of 0.5 mm.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 623
Author(s):  
Ni Tian ◽  
Zhen Feng ◽  
Xu Shi ◽  
Wenze Wang ◽  
Kun Liu ◽  
...  

In the present study, the fatigue life and fatigue fracture characteristics of annealed 7005 aluminum alloy plates subjected to different pre-tensile deformations were investigated. The results obtained upon increasing the pre-tensile deformation of the alloy plate to 20% revealed that the second-phase particles did not show any obvious changes, and that the thickness of the thin strip grain slightly decreased. The dislocation distribution in the alloy matrix varied significantly among the grains or within each grain as the dislocation density gradually increased with increasing pre-tensile deformation. Moreover, the fatigue performance of the annealed 7005 aluminum alloy plate was significantly improved by the pre-tensile deformation, and the alloy plate subjected to 20% pre-tensile deformation exhibited an optimal fatigue life of ~1.06 × 106 cycles, which was 5.7 times and 5.3 times that of the undeformed and 3% pre-stretched alloy plates, respectively. Two fatigue life plateaus were observed in the pre-tensile deformation ranges of 3–5% and 8–12%, which corresponded to heterogeneous dislocation distribution among various grains and within each grain, respectively. Moreover, two large leaps in the plot of the fatigue-life–pre-tensile-deformation curve were observed, corresponding to the pre-tensile deformation ranges of 5–8% and 16–20%, respectively.


2014 ◽  
Vol 2014.51 (0) ◽  
pp. _820-1_-_820-2_
Author(s):  
Tomohiro Okizaki ◽  
Takashi Kawakami ◽  
Takahiro Kinoshita ◽  
Atsuhiro Matsuura

2017 ◽  
Vol 748 ◽  
pp. 202-206 ◽  
Author(s):  
Takahiro Ohashi ◽  
Hamed Mofidi Tabatabaei ◽  
Tadashi Nishihara

This paper describes utilization of friction-stir forming (FSF) to generate a single wall on an aluminum alloy plate. The proposed process is as follows. The authors placed a material plate on a die having a variable-width groove and conducted friction stirring on its back surface. The material filled the cavity due to high pressure and heat caused by friction stirring. This process can be applied to generate thermal plate-fins and rib structures. The present study investigates the forming conditions and the corresponding results including the height limit of walls to obtain reference data for applications. In the experiment, a 3mm-thick JIS A5083P-O aluminum plate was utilized as the substrate. With a grove of less than 0.2mm-width, the wall was difficult to generate. The maxim height of the 0.2mm-thick wall formed by FSF was 2.8mm, and its aspect ratio was 14, which was difficult to form using conventional forging. Overall, the relationship between groove width of the die cavity and aspect ratio of maximum wall height to wall thickness followed the fractional curvature. This results implies that the deformable material volume generated by friction stirring is a key factor for wall height.


Author(s):  
Steven L. Dedmon

Wheel plate failures occur rarely in North American freight car service. When they do occur, derailments are a likely result. Shot peening has been used to improve fatigue life for more than 80 years and the efficacy of the process is now undisputed in reducing fatigue failures of parts subjected to high levels of cyclic stresses. The introduction of residual compressive stresses from shot peening is acknowledged as the reason for the improvement in fatigue life; comparable processes such as cold rolling, are successful for the same reason. Since residual stresses are so important to fatigue life, then design and processing prior to shot peening should have an equally important role. This investigation demonstrates some of the variables which are important to producing wheels resistant to plate fatigue failures.


2011 ◽  
Vol 381 ◽  
pp. 44-47
Author(s):  
Hun Guo ◽  
Dun Wen Zuo ◽  
Guo Xing Tang ◽  
W.M. Gan

Formulae of stress re-distribution and distortion by stress releasing during milling process are deduced to Initial Residual Stresses. Theory prediction of milling deformation due to residual stress is finished, and some calculating equation is given for the deformation solution. By means of these researches, the mechanism of the milling deformation due to residual stress is analyzed, the machining distortion caused by residual stress are analyzed and summarized using the analytical method.


2010 ◽  
Vol 97-101 ◽  
pp. 3187-3193 ◽  
Author(s):  
Shu Yuan Zhang ◽  
Yun Xin Wu

A mathematical model has been developed to predict the residual stresses level in pre-stretched aluminum alloy plate. This is based on force balances of the residual stress, theory of plastoelasticity and a new conception of free length. The model is relatively simple because only rolling direction residual stress is taken into account, but provides a clear illustration of stress relief mechanism in stretching process. With this model, residual stress distributions of stretched beam can be determined directly by knowing the specimen dimensions, material properties and the original stress. The model offers an useful tool to show the effect of varying tension ratio on the final residual stress level, thus makes it possible to predict stress relief and control residual stresses. An example of using the model is presented by applying published data while showing mechanism of stress relief during stretching. Analysis indicates that it is stretch-caused convergence of the free lengths of strips in beam that lead to reduction in the residual stresses.


Sign in / Sign up

Export Citation Format

Share Document