Static and Dynamic Characteristics of Hybrid a Tilting Pad Journal Bearings under Hydrostatic/Hydrodynamic Operations

2019 ◽  
Vol 2019.56 (0) ◽  
pp. L041
Author(s):  
Toshiya HAYASHI ◽  
Hiroo TAURA ◽  
Mitsuru ARAKAWA
2013 ◽  
Vol 364 ◽  
pp. 71-75
Author(s):  
Ming Hu Yin ◽  
Guo Ding Chen ◽  
Guo Yuan Zhang

Most of the studies about tilting pad journal bearings are for load-on-pad or load-between-pad tilting pad journal bearings, and for the other loading forms, the performance are often estimated by the performance of the two limited conditions, that may reduce the reliablity of bearing design or lead to waste materials in design. To obtained the influence of the load directions on the static and dynamic characteristics of the tilting pad journal bearing, which is called eccentric load effect in this papers, the performance calculation of the tilting pad journal bearing in different load directions is operated with a self-designed program. The results show that the load directions have considerable effects both on the static and dynamic characteristics of the tilting pad journal bearing, for the operating condition that load direction changed rapidly, it need performance analysis of the bearing in its special loading forms to enhance the precision and efficiency of bearing design, espacially where the dynamic performance of the tilting pad journal bearing is demanding.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fan Zhang ◽  
Peng Yin ◽  
Yuyang Liu ◽  
Jianmei Wang

Purpose The purpose of this paper is to study the influence of pivot stiffness on the dynamic characteristics of tilting-pad journal bearings (TPJBs) and the stability of the bearing-rotor system. Design/methodology/approach A theoretical numerical model is established, and the influences of pivot stiffness on TPJBs and a bearing-rotor system are analyzed. Then, two kinds of pivot structures with different stiffness are designed and the vibration characteristics are tested on the vertical rotor bearing test bench. Findings The pivot stiffness has an obvious effect on the dynamic characteristics of the TPJBs and the stability of the bearing-rotor system. As a result of appropriate pivot stiffness, the critical speed and the vibration amplification factor can be reduced, the logarithmic decay rate and the stability of the rotor system can be effectively increased. While the journal whirl orbit is smoother and the rubbing is obviously reduced when the bearings have flexible pivots. Originality/value The influence of pivot stiffness on TPJBs and a vertical rotor-bearing system is studied by theoretical and experimental methods.


2014 ◽  
Vol 74 ◽  
pp. 20-27 ◽  
Author(s):  
Gregory F. Simmons ◽  
Alejandro Cerda Varela ◽  
Ilmar Ferreira Santos ◽  
Sergei Glavatskih

Author(s):  
Tian Jiale ◽  
Yu Lie ◽  
Zhou Jian

The stable working condition of high speed, heavy loaded rotating machinery depends strongly on the stability provided by the journal bearing. Tilting pad journal bearings (TPJB) are widely used under such situation due to their inherent stability performance. However, because of the complexity of the TPJB structure, obtaining a reliable prediction of the journal bearing’s dynamic characteristics has always been a challenging task. In this paper, a theoretical analysis has been done to investigate the dynamic performance of a 4 pad TPJB with ball-in-socket pivot, emphasizing on the frequency dependency due to pivot flexibility. The analytical model containing the complete set of dynamic coefficients of the TPJB is built and the pivot stiffness is calculated and used to evaluate the equivalent dynamic coefficients of the bearing. In general, at lower perturbation frequency, the equivalent stiffness and damping increase with frequency. While for higher perturbation frequency, the dynamic coefficients are nearly independent of the frequency. Moreover, the results also show the limit value of the dynamic characteristics of the TPJB when the perturbation frequency is set to 0+ and ∞.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Heitor Antonio Pereira da Silva ◽  
Rodrigo Nicoletti

The dynamic characteristics of tilting-pad journal bearings (TPJBs) are strongly related to their geometric parameters, most importantly the bearing clearance. In turn, the bearing clearance in TPJBs is strongly dependent on the machining tolerances of the bearing parts and their assembling. Considering that, the machining tolerances of the pads can be of the same magnitude order of the oil film thickness in the bearing, it is uncertain that the TPJB will have the originally designed geometry after assembling. Therefore, the resultant dynamic characteristics of the TPJB also become uncertain. In this work, we present an investigation of tilting-pad bearings and their equivalent dynamic coefficients when subjected to dimensional variability. First, we perform a stochastic analysis of the system using a thermo-hydrodynamic (THD) model of the tilting-pad bearing and considering the bearing clearance in each pad as an independent random variable (varying between minimum and maximum values). We show that the scattering of the results of the dynamic coefficients is limited by the values obtained from TPJBs with all pads with maximum or minimum possible clearances. Second, we apply the concepts of reliability analysis to develop a design procedure for tilting-pad bearings. This design methodology considers the results obtained in the stochastic analysis and it allows the Engineer to appropriately design the bearing for a given probability of success or, inversely, a given probability of failure. Such approach assures a level of reliability to the dynamic coefficients of designed TPJBs in face of their dimensional variability.


Sign in / Sign up

Export Citation Format

Share Document