Analysis of Eccentric Load Effect for Tiliting Pad Journal Bearing

2013 ◽  
Vol 364 ◽  
pp. 71-75
Author(s):  
Ming Hu Yin ◽  
Guo Ding Chen ◽  
Guo Yuan Zhang

Most of the studies about tilting pad journal bearings are for load-on-pad or load-between-pad tilting pad journal bearings, and for the other loading forms, the performance are often estimated by the performance of the two limited conditions, that may reduce the reliablity of bearing design or lead to waste materials in design. To obtained the influence of the load directions on the static and dynamic characteristics of the tilting pad journal bearing, which is called eccentric load effect in this papers, the performance calculation of the tilting pad journal bearing in different load directions is operated with a self-designed program. The results show that the load directions have considerable effects both on the static and dynamic characteristics of the tilting pad journal bearing, for the operating condition that load direction changed rapidly, it need performance analysis of the bearing in its special loading forms to enhance the precision and efficiency of bearing design, espacially where the dynamic performance of the tilting pad journal bearing is demanding.

Author(s):  
Steven Chatterton ◽  
Filippo Cangioli ◽  
Paolo Pennacchi ◽  
Andrea Vania ◽  
Phuoc Vinh Dang

The current design trend of rotating machines like turbo-generators, compressors, turbines, and pumps is focused on obtaining both high dynamic performances and high versatility of machines in different operating conditions. The first target is nowadays achieved by equipping machines with tilting pad journal bearings. For the second target, State-of-the-Art researches are focused on the development of active systems able to adapt the dynamic behavior of the machine to the external environment and new operating conditions. Typical causes of large vibration in rotating machines are faults, residual unbalance, resonance condition and instabilities. Aiming at vibration reduction, in recent years many studies are carried out to investigate different solutions; one of them is based on active tilting pad journal bearing. In this paper, the authors investigate, by simulations, the reduction of shaft vibration by controlling the motion of the pads of a tilting pad journal bearing. The basic idea is to balance the exciting force on the shaft with a suitable resulting force of the oil-film pressure distribution. In particular, a sliding mode controller has been considered and both angular rotation of the pads about the pivot and the radial motion of the pivot have been analyzed. Sliding mode control guarantees high robustness of the control system in real applications that can be characterized by a strong non-linear behavior. In the paper a general consideration about the bearing, the actuating methods and the control system have been provided. A numerical analysis of large size rotor equipped with active pads has been carried out in order to verify the effectiveness of the system in several conditions, even during the most critical operating phase, i.e. the lateral critical speed.


1992 ◽  
Vol 114 (3) ◽  
pp. 579-587 ◽  
Author(s):  
Michel Fillon ◽  
Jean-Claude Bligoud ◽  
Jean Freˆne

Operating characteristics of four-shoe tilting-pad journal bearings of 100 mm diameter and 70 mm length are determined on an experimental device. The load, between pad configuration, varies from 0 to 10,000 N and the rotational speed is up to 4000 rpm. Forty thermocouples are used in order to measure bearing element temperatures (babbitt, shaft, housing and oil baths). The influence of operating conditions and preload ratio on bearing performances are studied. Comparison between theoretical and experimental results is presented. The theoretical model is also performed on a large tilting-pad journal bearing which was investigated experimentally by other authors.


1981 ◽  
Vol 23 (3) ◽  
pp. 131-141
Author(s):  
M. Malik ◽  
R. Sinhasan ◽  
D. V. Singh

The rolling-pad journal bearing is a kinematic variation of the well-known tilting-pad journal bearing. In rolling-pad bearings, the pads, instead of tilting about fixed pivots, roll at their back surfaces on the inside surface of a common sleeve to accommodate changes in the operating conditions of the bearing. This paper presents a comparison of the theoretical performance characteristics of rolling-pad journal bearings with those of tilting-pad journal bearings. The comparative study indicates that the dynamic performance characteristics of the rolling-pad bearing configuration are superior to those of the tilting-pad bearing.


Author(s):  
Jason C. Wilkes ◽  
Dara W. Childs

The floating-bearing-test-rig concept was initially developed by Glienicke in 1966 and has since been used to test many tilting-pad journal bearings (TPJBs). The impedances measured during these tests have been compared to rotor/journal perturbed impedance predictions. Since the inertial acceleration of a pad is different for bearing perturbed and rotor perturbed motions, the bearing’s reaction force components for bearing perturbed and journal perturbed motions will also differ. An understanding of how bearing perturbed and rotor perturbed impedances differ is needed to assess the validity of past, present, and future comparisons between TPJB test data and predictions. A new TPJB perturbation model is developed including the effects of angular, radial, and transverse pad motion and changes in pad clearance due to pad bending compliance. Though all of these pad variables have previously been included in different analyses, there are no publications containing perturbations of all four variables. In addition, previous researchers have only perturbed the rotor, while both the bearing and rotor motions are perturbed in the present analysis. The applicability of comparing rotor-perturbed bearing impedance predictions to impedances measured on a bearing-perturbed test rig is assessed by comparing rotor perturbed and bearing perturbed impedance predictions for an example bearing.


Author(s):  
Rafael O. Ruiz ◽  
Sergio E. Diaz

It has been identified that small variations in the pad clearance and preload of a Tilting Pad Journal Bearing lead to important variations in their dynamic coefficients. Although this variation trend is already identified, a more robust statistical analysis is required in order to identify more general tendencies and quantify it. This work presents a framework that helps to identify the relation between the manufacturing tolerance of the bearing (reflected in the pad clearance and preload) and the expected variations on the dynamic coefficients. The procedure underlies the adoption of a surrogate model (based on Kriging interpolation) trained by any deterministic model available to predict dynamic coefficients. The pad clearance and preload are considered uncertain parameters defined by a proper probability density function. All statistical quantities are obtained using stochastic simulation, specifically adopting a Monte Carlo simulation employing the surrogate model. The framework is illustrated through the study of a five pad bearing.


1998 ◽  
Vol 120 (2) ◽  
pp. 319-324 ◽  
Author(s):  
P. Monmousseau ◽  
M. Fillon ◽  
J. Freˆne

Nowadays, tilting-pad journal bearings are used under more and more severely demanding operating conditions. Three limits of safe operation were defined (Leopard, 1976): the hydrodynamic limit, the mechanical limit and the thermal limit. The purpose of this study is to determine the hydrodynamic limit of safe operation during start-up for a tilting-pad journal bearing. During start-up, the rapid increase of the temperature in the bearing solids leads to the thermal expansion of both the pads and the shaft. The operating bearing clearance decreases and, when it tends toward zero, seizure occurs. The evolution of the main characteristics (temperature, pressure, film thickness and displacements) versus time is analyzed in the case when a seizure occurs.


1983 ◽  
Vol 105 (3) ◽  
pp. 377-383 ◽  
Author(s):  
M. L. Adams ◽  
S. Payandeh

A time-transient nonlinear dynamic analysis is presented to study the motion of statically unloaded journal-bearing tilting pads. The major finding is that unloaded pads can exhibit a strong sub-synchronous self-excited vibration. The frequency of this periodic motion is somewhat below half the rotational speed and bears a close relationship to self-excited oil-whip vibration of rotors on lightly loaded non-tilting pad journal bearings. The identification of this type of self-excited pad vibration has practical significance to the solution of problems in applications involving damage to unloaded pads. A comprehensive parametric study is presented and shows which tilting-pad journal bearing parameters are significant to self-excited pad vibration and its elimination.


Author(s):  
David P. Tschoepe ◽  
Dara W. Childs

Measured and predicted static and dynamic characteristics are provided for a four-pad, rocker-pivot, tilting-pad journal bearing (TPJB) in the load-on-pad (LOP) and load-between-pad (LBP) orientations. The bearing has the following characteristics: pad-pivot offset = 0.57, L/D = 0.6, pad length = 60.33 mm. Unit loads ranged from 0 to 2903 kPa, and speeds ranged from 6.8 to 13.2 krpm. Nonrotating tests were carried out using a small rotating load to precess the test-bearing stator around the rotor shaft while measuring the clearances. These tests produced “clearance rectangles” for the LOP case and “clearance rhombuses” for the LBP cases. These tests defined the bearing clearances for facing bearing pads that were significantly different with a ratio between the larger and smaller clearances at approximately 1.6. Clearances were measured at room temperatures and immediately following tests to obtain room temperature and “hot” clearances. Hot-clearance measurements showed a 16%–25% decrease as compared to room-temperature clearances. Static load-deflection tests were carried out to determine the pad's flexibility characteristics with respect to the housing (pad-pivot flexibility). Detailed circumferential temperature measurements were made on the loaded pad(s) with only leading and trailing temperatures for the unloaded pads. The radial thermal gradient was examined in the loaded pad via embedded thermocouples on the rotor and outside of the pads. Results showed a 5–25 °C decrease from the rotor side of the pad to housing side. An FEM analysis predicted that the radial and circumferential temperature gradients caused an uneven thermal deflection in the pad, changing the pads' radii of curvature. (However, the changes made scant differences in predictions.) Dynamic-excitation tests were performed over a range of excitation frequencies Ω to obtain 2 × 2 complex dynamic-stiffness matrices [Hij] as a function of Ω. The Re(Hij) coefficients were readily fitted as a linear function of Ω2, producing frequency-independent stiffness and virtual-mass coefficients. The Im(Hij) coefficients were readily fitted as a linear function of Ω, producing frequency-independent damping coefficients and supporting the adequacy of a constant-frequency MCK model for bearings out to running speed. Measured (separate) pad clearances, pad-contact flexibility characteristics, and input temperatures were used as input for a recently-developed code to predict the static and dynamic characteristics of the bearing. The code used a Reynolds equation model plus an adiabatic energy equation. It also accounts for pad-contact flexibility. Measurements versus predictions were made for the temperature distributions, the dynamic-stiffness coefficients, and the direct rotordynamic coefficients (stiffness, damping, and virtual-mass). The measured cross-coupled stiffness and damping coefficients were insignificant, and are not presented. Generally, the code predicts the trends of the circumferential temperature distributions well; however, it predicted a continuing increase in temperature from leading to trailing edge, while the tests show an increase through the next-to-last temperature probe and then a drop to the last probe nearest the trailing edge. Generally speaking, the code does an adequate job of predicting rotordynamic coefficients for both LOP and LBP conditions. The input data (clearances, pad-flexibility, etc.) and output results (temperatures, dynamic stiffness coefficients, rotordynamic coefficients) presented allow other researchers to directly make predictions for these bearings using alternate models and codes.


1993 ◽  
Vol 115 (2) ◽  
pp. 219-226 ◽  
Author(s):  
W. Dmochowski ◽  
K. Brockwell ◽  
S. DeCamillo ◽  
A. Mikula

In this paper dealing with the tilting pad journal bearing, experimental results are presented which show that, at higher shaft speeds, the leading-edge-groove (LEG) design has significantly lower operating temperatures to those of the conventional design of tilting pad journal bearing. Subsequent theoretical analysis has shown that this reduction in pad operating temperature is the result of feeding cool oil directly to the leading edge of the pad. This has the effect of reducing the amount of hot oil carried over from one pad to the next.


Sign in / Sign up

Export Citation Format

Share Document