ICONE11-36332 THE EFFECT OF CONSIDERING LOCALIZED FRICTION IN TWO-PHASE MIXTURES AND RISER CONDENSATION ON THE SECOND MARGINAL STABILITY BOUNDARY OF A NATURAL CIRCULATION LOOP

Author(s):  
Hesham Nagah Abdou ◽  
Veronica Beatriz Garea ◽  
Axel Eduardo Larreteguy
Author(s):  
Neetesh S Raghuvanshi ◽  
Goutam Dutta ◽  
Manoj K Panda

A numerical model for a supercritical natural circulation loop is developed to examine the flow instabilities by nonlinear stability analysis. The supercritical natural circulation loop is a loop geometry, which is driven by natural circulation with supercritical fluids as a coolant. A mathematical formulation is developed to study the steady-state and transient solution procedure for supercritical natural circulation loop. This mathematical model is then used to perform various parametric studies with different supercritical fluids (water, [Formula: see text], R134a, ammonia, R22, propane, and isobutane). The behavior of all the fluids is analyzed on identical geometrical and operating conditions. A comprehensive numerical study of the nonlinear stability analysis is presented with particular emphasis on the feasibility of various fluids in a natural circulation loop environment. The 50% increment in loop diameter and height increased the stable operating zones and shifted the marginal stability boundary upward respectively by approximately three times and 25–40% of the previous value. However, further increase in diameter and height reduces the increment of stable operating zones; hence the marginal stability boundary shifts upward marginally than the previous value. Furthermore, the marginal stability boundaries are generated to identify the stable and unstable zones for the available geometrical and operating conditions.


Author(s):  
ZhongChun Li ◽  
JiYang Yu ◽  
XiaoMing Song

As a part of “supercritical water reactor basic research”, the stability of the natural circulation research plays an important role on the feasibility of supercritical water reactor and experiment research. In this paper, the stability of a supercritical water natural circulation loop built by Department of Engineering Physics, Tsinghua University was studied by numerical method. It was confirmed that the static or Ledinegg instability doesn’t occur in HACA system, and there are no instabilities existing when the inlet enthalpy is larger than critical enthalpy. Instability was observed by numerical way, which is similar to DWOs and PDOs in two phase natural circulation loop. The system parameters’ influence on the instability of supercritical natural circulation loop was studied.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Dipankar N. Basu ◽  
Souvik Bhattacharyya ◽  
P. K. Das

A model to predict the steady-state behavior of a rectangular two-phase natural circulation loop has been proposed. The analysis employs a one-dimensional two-fluid model to identify various system parameters, with particular emphasis on the subcooled boiling region. The onset of two-phase region and point of net vapor generation and associated liquid temperatures and vapor qualities have been estimated using a few widely recognized correlations. Predicted results demonstrate that the consideration of subcooled boiling may have significant effect on system behavior, particularly around the transition regions. The interaction of saturated bubbles and subcooled liquid and associated change in heat transfer and frictional forces has been discussed in detail. Fluid stream has been observed to have different combinations of flow stream conditions at boiler exit and condenser inlet. Five probable combinations have been identified and a generalized working-regime map has been proposed on Nsub−NZu plane. Attempts have been made to identify the influence of various control parameters. A favorable sink condition (higher coolant flow rate or lower coolant entry temperature) has been found to be of particular importance to attain a wider operating range of wall heat flux and better heat transfer characteristics. A design map has been proposed to identify favorable operating condition in terms of control parameters to ensure complete condensation.


Author(s):  
Jong Chull Jo ◽  
Frederick J. Moody ◽  
Kyu Sik Do

A PWR incorporates a passive auxiliary feedwater system (PAFS), a closed natural circulation loop which is aligned to feed condensed water to its corresponding steam generator (SG). During its operation, saturated steam in the SG secondary side moves up due to buoyancy force and passes through a steam line, and then flows into a tube-tank type passive condensation heat exchanger where steam is condensed inside the tubes while the tube outer surfaces are cooled by the pool water. The condensate water is passively fed into the SG economizer by gravity. Because a natural circulation loop is susceptible to two-phase flow instability, it is requisite to confirm the system is designed adequately to avoid the potential challenges to its operational safety due to the instability. This paper presents an analytical approach for assessing if the PAFS has possible thermal and fluid mechanical characteristics which could lead to an undesirable unstable or oscillating condensate water level in the vertical pipe section. Both steady and unsteady analytical solutions for a simplified natural circulation loop model of the PAFS were derived in terms of the condensate water level and velocity in the vertical pipe section. From the solutions, the criteria for determining a potential for two-phase instability in the system were obtained.


Sign in / Sign up

Export Citation Format

Share Document